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Choice-based Demand Models for Emerging Applications in Retail

and Online Platform Operations

by

Dmitry Mitrofanov

Abstract

The digital technological revolution has transformed nearly every aspect of our life, disrupting
industry after industry. This not only led to the explosive growth of online sharing platforms, but
also created critical challenges as well as opportunities for traditional offline retailers to customize
their operations. For instance, while personalized promotions have been around for several years
now on online platforms, recent technological developments (e.g., electronic shopping carts), as
well as increased availability of customer-level data, extended similar practices to brick-and-
mortar settings. To ride this wave of change successfully, companies need to rethink traditional
operational problems such as demand prediction or promotion planning. Demand forecasting
models have always played a crucial role both in practice and in academia, where choice models
are now ubiquitous in different areas of operations, marketing, and economics. However, these
existing models face the challenge of staying relevant due to the dramatic changes mentioned
above.

Demand calibration becomes increasingly important in the sharing economy era where online
platforms need to make pricing decisions and match supply and demand. Unsurprisingly, demand
forecasting in this context is very challenging because, at any given time, users on the online
application face hundreds or even thousands of available alternatives, while suffering from limited
attention. The failure to account for unobservable consideration sets in these settings will result
in biased inferences and incorrect demand forecasts. Moreover, most existing literature regarding
choice-based demand estimation and prediction makes the questionable assumption that we are
always able to access accurate information about offer sets (which is a necessary input for choice
models), while forecasting demand. For example, this assumption is clearly not valid in the case
of online peer-to-peer car-sharing platforms where the availability of cars over time depends upon
the decisions of many independent car owners and renters. Neither is it valid in the case of a
retail store where product availability changes over time due to either stockouts or deliberate
scarcity.

Overall, this thesis focuses on real-world implementations of choice models across a range
of emerging applications both in retail as well as on online sharing economy platforms. The
key contribution of this dissertation is in novel methodologies to effectively handle these afore-
mentioned challenges, which have been created by the growing popularity of two-sided online
platforms, recent advances in technology, and increased availability of customer-level data.

The first chapter proposes a back-to-back procedure for running personalized promotions in
retail, from the construction of a nonparametric choice-based demand model where customer
preferences are represented by directed acyclic graphs (DAGs), to the design of such promotions.
We describe the process of obtaining the DAGs and explain how to mount a parametric, multi-
nomial logit model (MNL) over them. We provide new bounds for the likelihood of a DAG and
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demonstrate how to conduct the MNL estimation. We test our model to predict purchases at the
individual level using real-world retail data as compared to state-of-the-art benchmarks. Finally,
we illustrate how to use the model to run personalized promotions. Our framework leads to
significant revenue gains, which makes it an attractive candidate to be used in practice.

The second chapter investigates the problem of identifying consideration sets from sales trans-
action data in a data-driven manner. We assume that customers are boundedly rational and make
their purchases in a two-stage process. First, they sample their consideration set. Next, they
purchase the most preferred considered item. Theoretically, we address the problem of identi-
fying consider-then-choose models from data. We use tools from Boolean function analysis to
derive a closed-form expression for computing distribution over consideration sets from observed
choice probabilities. Because calibrating this class of choice models is a hard problem, we pro-
pose a framework that effectively infers consideration sets. Our methodology of modeling the
consideration set formation is founded on machine learning techniques (e.g., decision trees or
random forests).

The last chapter is based on application of the proposed consider-then-choose framework in
retail and in peer-to-peer car-sharing industries. We observe that accounting for consideration
sets can boost the predictive performance in comparison with classical benchmarks. Our find-
ings suggest that our models tend to be rather robust to the degree of ambiguity in the offer
set definition. Their relative importance in prediction tasks increases with this noise. Moreover,
we demonstrate that the proposed models can provide important managerial insights about the
consideration set formation.

Thesis Supervisor: Srikanth Jagabathula
Title: Associate Professor of Tech, Ops, & Stats
Leonard N. Stern School of Business, NYU
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Preface

This dissertation describes joint research conducted with my advisors that is currently under

review in journals. Parts I and II are based on the papers by [49] and [50], respectively. As a

result, some of the content in this thesis was recorded verbatim from the above papers. The

paper containing preliminary results of Part II was my job market paper, which received (1) 2nd

prize in the 2019 MSOM student paper competition, and was selected as a finalist for the (2)

2019 INFORMS best service science student paper award.

During my PhD at Stern, I have also been conducting research related to ride-hailing opera-

tions with an empirical focus. In the first project within this field, we studied the impact of IPO

on ride-hailing platforms’ operational decisions. The manuscript is completed and is now under

review in a journal [18]. In the second project, we analyzed loyalty and switching behaviors

of price and delay sensitive riders using a comprehensive panel dataset, in which we observed

choices for both Uber and Lyft. Even though this work is still ongoing [17], it was already pre-

sented in the 2019 INFORMS Annual Meeting. Both research projects are not included in this

dissertation due to an NDA agreement that prevents us from making the work publicly available

at this time. However, we will provide a short description of these projects below.

Lyft and Uber IPO: Before and After

The research question in [18] is motivated by the impact of business events on ride-hailing plat-

forms’ operational decisions. In 2019, there were two unicorn IPOs from ride-hailing platforms

– Lyft filed its IPO on March 1 at a $24.3 billion valuation and Uber filed its IPO on April 11

at a $82.4 billion valuation. In [18], we investigate whether or not these platforms adjusted their

operational decisions in anticipation of their IPOs. To answer this question, we use a comprehen-

sive panel dataset provided by our industry partner with Uber and Lyft rides completed between

January 2018 and July 2019. We treat each IPO filing day as a natural experiment and estimate

several econometric models to quantify the IPO impact on platform decisions (e.g., promotion

strategy), performance metrics (e.g., number of rides, market share, and number of users), and

consumers (e.g., surplus and fairness). We find strong evidence that both platforms adjusted

their operational decisions by issuing more promotions before their IPO filings. We also argue
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that the impact was different for Lyft versus Uber. Moreover, the richness of our dataset allows

us to account for various sources of heterogeneity including market penetration, customers’ past

riding frequency, riders’ deal-seeking behavior, and tip amount.

In [18], we find that Lyft and Uber offered more promotions to riders in cities with a lower

market share, suggesting that both platforms tried to increase their presence in markets where

they experienced low levels of penetration. We show that riders who received high promotions

in the past were more strongly affected by promotional strategies, implying that the platforms

prioritized short-term performance over the long-term impact of riders’ deal-seeking behavior.

We observe that the promotion amount was amplified for longer trips while the relative promotion

was higher for shorter trips. This can be partially explained by the promotion structure in ride-

hailing industry. Our analysis indicates that the IPO filings had a positive effect on rider surplus

and fairness, in the sense that additional strategic promotions were fairly distributed among

riders as opposed to being highly targeted.

Customer Loyalty in Ride-Hailing: Empirical Evidence

In [17], we analyze the loyalty and switching behaviors of price and delay sensitive customers in

ride-hailing. Our dataset offers a unique opportunity to study this question as we observe choices

for both Uber and Lyft. We first propose a way of overcoming the issue of missing data regarding

waiting times and competitor prices. We assume that the competitor’s price depends upon ride

characteristics (e.g., trip length and duration) as well as a surge multiplier, which is controlled

by the platform as a response to the demand-supply imbalance. We propose an approach to

compute waiting times by calibrating an M/M/1 queuing model with a state-dependent service

rate. We then estimate several reduced-form and choice models to examine customer loyalty and

switching patterns.

From the reduced form analysis, we find that, even after controlling for prices and waiting

times, customers are loyal to their most frequently used platform. In [17], by using choice models,

we capture the dynamic interaction between customers and ride-hailing platforms. Specifically,

we find that price reduction promotions have a positive short-term effect on riders’ preferences

but a rather negative long-term effect. This is because promotions induce deal-seeking behavior

in users. Interestingly, our analysis shows that users’ tipping decisions reveal their platform
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preferences. Moreover, the richness and granularity of our dataset allows us to take heterogeneity

of riders into account to a great extent. Using revealed preferences of customers, we calibrate

multilevel logit models and compute price and waiting time elasticities of each rider exploiting

Bayesian approach. Herein, we analyze the differential responses of riders in regards to trip prices

and delay; for instance, we investigate what riders tend to be more sensitive to trip prices and

waiting times. Finally, we explicitly model riders’ switching patterns by adopting an alternative

interpretation of the multinomial logit. One emerging insight is that riders’ deviations from

their favorite platform are more likely to occur because of price reduction promotions issued by

a competitor than because of a competitor offering lower waiting times.
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Introduction

Digital technologies have dramatically reshaped industries in nearly every corner of the world.

For instance, sharing economy platforms have become extremely popular in the last few years

and have changed the ways in which we commute, travel, and borrow, among other activities.

Even traditional large-scale brick-and-mortar retailers follow these trends in order to compete

with newly popular online marketplaces. For example, technological developments have altered

the manner in which offline retailers can customize their offers. Specifically, personalized promo-

tions can now be implemented using electronic price tags, beacon-based technology, or electronic

shopping carts embedded with a computer vision system, among other methods.

Technological advances, given their importance and widespread use, pose new challenges for

companies to better solve classical problems within operational and marketing contexts, such as

demand forecasting or running promotions. Demand estimation problems generally receive a lot

of attention in operations because they are an integral part of revenue management as well as

day-to-day operations in retail and online platform-enabled industries. Many models in practice

assume each item in the product universe receives an independent stream of demand. Neverthe-

less, in the last two decades, we witnessed a paradigm shift from independent to choice-based

demand models in order to capture the substitution within items in the product universe. Today

choice-based demand modeling is a topic of great importance for both scholars and practitioners

because it has significant revenue implications. However, demand calibration and prediction have

always been very challenging for many reasons: (i) product availability that is hard to forecast

(more so while making long-term demand predictions) because it varies over time as a result

of either inventory stockouts or deliberate scarcity introduced by the firm; (ii) customer choices

that are affected by promotion events (i.e., preferences may be altered by price or display promo-

tions); (iii) the bounded rationality of individuals (i.e., customers evaluate only products in their
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consideration set which is unobservable; and (iv) scarcity of individual-level data (e.g., when only

a few observations per customer are available for a particular category). The aforementioned

technological revolution further exacerbates some of these challenges, which then require new

solutions.

For example, technological developments have altered the manner in which offline retailers

customize their offers. This creates a need to develop fine-grained demand models in order to

evaluate individual customer responses to product promotions. The rise of the sharing economy

creates an even greater need to account for users’ bounded rationality as online platforms provide

thousands of alternatives to choose from and the failure to account for consideration sets will

result in biased demand estimates as well as incorrect predictions and inferences. Moreover, new

online applications within the sharing economy exacerbate the problem of long-term demand

forecasting because product assortments change rapidly over time. Think of an online peer-to-

peer car-sharing platform where car availability over time depends upon the decisions of many

independent car owners and renters that make car reservations in advance and at various times.

To this end, success in making long-term demand predictions is largely dependent upon the

robustness of choice-based demand models to the degree of ambiguity in offer set definitions.

Note that to make demand predictions with choice models, we need to feed them accurate data

regarding product availability, which is not always available. Most existing literature regarding

choice-based demand estimation assumes that we are able to access accurate information on

offer sets, which is a significant problem in practical usage. The previously mentioned emerging

applications, both in retail and on online platform operations, reveal additional limitations within

the existing work regarding choice-based demand modeling and operational decision:

∙ Personalized promotions: Most existing research focused on using aggregate sales transac-

tion data to estimate demand models in the presence of stockouts and offer sets that change

over time; then they use these estimates as inputs to solve assortment and pricing opti-

mization problems. The paper by [6] provides an up-to-date overview of retail operations

and revenue management literature regarding choice-based demand models. These models

are used as inputs for key decisions, such as promotion optimization. The effect of sales

promotions on retailers is studied extensively in marketing [8]. An overview of different

promotion mechanisms used by retailers is provided by [34], where they summarize differ-
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ent objectives and effects of promotions. Only a few papers report a positive effect of sales

promotions on long-run brand preferences [23, 32]. Most empirical studies conclude that

mass sales promotions are good instruments to induce customers’ substitution behaviors

in the short run, but with neutral or negative effects on brand preference in the long run

[24, 72, 86]. Most of this work focuses on an empirical understanding of the overall impact

of promotions. We, on the other hand, seek to develop a methodology for carrying out

personalized promotions.

∙ Robust demand models accounting for consideration sets: While calibrating a choice model

from the sales transaction data, we encounter a major common challenge – the actual

consideration set of a customer is unobserved. The offer set defines the set of products that

the customer choose from, but the consideration set defines the set of products that the

customer actually evaluates before making a final choice. In many emerging applications,

the definition of the offer set is, itself, quite unclear. For example, in the context of

online platform operations, a company needs to make short-term (or long-term) demand

predictions in order to match with supply or to optimize strategic as well as marketing

decisions. However, product availability varies over time and cannot always be known

perfectly in advance. It is a common practical issue in retail when stockout events mask

the true offer set information by adding noise to product availability data. Even if the

offer set is well defined, the consideration set might still remain unclear, both on the online

platform as well as in retail settings because of the physical and cognitive limitations

of customers, that prevent them from evaluating all of the products offered. In all of

these applications, it is important that the choice models remain robust amids the noisy

definitions of the offer sets. Choice-based demand models accounting for consideration sets

receive lots of attention both in marketing as well as operations fields [13, 35, 41, 99]. Our

methodology is distinct because we provide a more flexible and data-driven framework for

modeling consideration set formation of customers. As such, our model is able to subsume

a variety of marketing consideration set heuristics and screening rules known in academia

and practice, such as the inertia in choice or short-term brand loyalty [53]. This heuristic

means that in terms of frequently purchased consumer goods, customers tend to stick to the
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same option rather than evaluate all available products in each store visit. In this thesis, we

strive to showcase the application of a consider-then-choose framework in various real-world

applications.

This thesis investigates choice-based demand estimation models in order to address the chal-

lenges stated above and explores emerging applications of the proposed methodologies in the

operations field such as running personalized promotions or making robust demand predictions.

Our contributions

This dissertation consists of two parts. Part I investigates the problem of personalized operations

in retail. In Part II, we study choice-based demand models, accounting for the consideration

set formation of customers with applications both in retail and on online platforms. Within

personalized operations, we focus on the problems of customized predictions and promotions in

retail using consumer panel data. In the latter part, we specifically focus on two subproblems:

(i) inferring consideration sets from sales transaction data and (ii) developing robust demand

prediction models in retail and on online platform operations.

Personalized promotions

In the retail industry, it is crucial to build an efficient and profitable mechanism to run pro-

motions, because a significant amount of money is spent on price reduction deals and an un-

precedented number of goods are sold at discount prices. In the last several years, the rise of

business analytics and the increased availability of data have motivated the retail industry to

shift from using massive promotions to using customized offers in order to improve revenues

and to better address the needs of consumers. These customized promotions rely on the het-

erogeneous product preferences of individuals within a given category as well as their different

sensitivities to price discounts and/or to the location of products on the shelf. In Chapter 1, we

tackle the problem of predicting individual customer responses to promotion decisions within a

given product category and, based on these predictions, optimizing the portfolio of products to

be promoted for a particular individual. The problem is challenging due to the limited number

of observations available for each individual. To extract a signal from the limited data in the
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most efficient way, we model each individual through a directed acyclic graph (DAG) (i.e., partial

order). In order to account for promotions in our model, each DAG consists of two copies of each

product – under promotion and regularly priced. The DAG is constructed dynamically from a

set of rules that account for the revealed preferences of each customer throughout their history

of past purchases. In addition, for every item in the product category we add an edge to the

DAG from its promoted copy to its non-promoted copy, assuming rational purchase behavior of

the individuals. The DAG illustrates partial preferences of the form “promoted copy of product

𝑖 is preferred to promoted copy of product 𝑗” through a directed edge from promoted copy of

product 𝑖 to promoted copy of product 𝑗, but typically does not provide a full preference list

of all items in the product universe. The data sources required by our methodology include

historical purchase transactions data tagged by customer ID, information about the assortment

available for the product category of interest at the moment of purchase, and the identification

of products that were on promotion at the time. Taking the collection of DAGs representing

the customer basis as input, we calibrate an MNL model over the partial orders and quantify

the prediction power on out-of-sample transactions. Then, we use this information to optimize

personalized promotions. The illustrative DAG-based structure and intuitive properties of our

systematic approach to running personalized promotions can appeal to both academia as well

as industry, where many supermarkets still employ a rule-of-thumb approach in daily operations

[20]. We summarize our contributions below.

∙ We propose and analyze a nonparametric choice-based demand model that explicitly ac-

counts for promotions. We extend a nonparametric partial order-based choice model [52]

to capture the promotion effect. The proposed model belongs to the family of Random

Utility Maximization (RUM)-based choice models. In particular, we consider 𝑚 customers

making repeated purchases from a specific category of substitutable products over a finite

period of time. In each store visit, customers sample a full list of preferences in accor-

dance with their partial order, according to a distribution that corresponds to their market

segment, and chooses the highest-ranking item within their consideration set.

∙ We provide a preference graph decycling algorithm. While processing the data source in

the DAG construction phase, customers may exhibit an apparent inconsistency in their
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purchasing behavior, which may imply the creation of a cycle in the associated graph.

Note that sales transaction data only provides us with a collection of revealed preferences

for every individual – the set of available products at the time of purchase and the chosen

product. Implying that the chosen brand is preferred over other brands that were available

at time 𝑡 but not chosen, we explicitly assume that the consideration set of a customer at

time 𝑡 consists of all the available items in the store. However, this might not be the case

due to the limited attention of individuals. Therefore, ignoring consideration sets results in

adding spurious edges (i.e., comparisons) to the DAG when building a customer’s partial

order. We address this challenge by running a decycling procedure based on a mixed integer

linear programming (MILP) formulation in order to maintain a maximum number of arcs in

describing customer preferences through a DAG. In other words, we want to keep as much

information in the DAG as possible. To some extent, applying this decycling procedure

is equivalent to accounting for consideration sets in a data-driven way, while building a

customer’s partial order.

∙ We quantify predictive accuracy gains of the proposed choice-based demand model. In our

empirical analyses, we focus on real-world panel data regarding the sales transactions of

27 grocery categories across two large U.S. markets in 2007. These extensive empirical

studies demonstrate that our approach to accounting for promotion effects results in more

precise and fine-grained predictions of customer choice behavior. This is in comparison

with state-of-the-art benchmarks that also incorporate promotion effects. In particular,

we obtain up to 14% improvement in prediction accuracy, on average, across 27 product

categories.

∙ We derive bounds on estimation and prediction guarantees for the partial order-based choice

model. Obtaining an estimate of marginal distribution for partial preferences under the

MNL model requires computing the likelihood of a DAG, which is known to be a #P-hard

problem. The latter result follows immediately from the hardness of counting the number

of rankings consistent with a partial order. Therefore, we use the approximation solution to

efficiently compute the likelihood of the DAG and the probability that the customer chooses

a specific product from an offer set conditioned on the partial order, which describes the
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customer’s preferences. In the present paper, we derive lower and upper bounds relative

to the exact likelihood of partial orders and to the exact distribution of partial preferences

under the MNL model.

∙ We propose a methodology for optimizing personalized promotions and test it on real-world

panel data. In the spirit of operations-related literature, the defined nonparametric choice-

based demand estimation model is used as an input for a personalized promotion opti-

mization framework in order to improve the retailer’s revenue. Our approach to running

personalized promotions allows for an intuitive and illustrative interpretation of the result-

ing customized promotions policy. This is a very appealing property for the retail industry,

where many supermarkets still employ a manual process based on a rule-of-thumb ap-

proach as well as past experience, in order to decide price promotions. We observe that

our methodology designed to optimize personalized promotions improves the retailers’ rev-

enue by more than 23% for certain product categories, based on the real-world panel sales

transaction data.

Inferring consideration sets from sales transaction data

Chapter 2 investigates the problem of identifying consideration (or competition) sets from sales

transaction data. This is a very important and challenging managerial decision for strategic

planning as well as for managing day-to-day operations within the company. In particular, we

study a general consider-then-choose (GCC) model. We fix the choice rule to be consistent with

a single preference ordering but allow the distribution over consideration sets to be unrestricted.

The key distinction of our work from the existing literature is that we allow the distribution

over consideration sets to be general. At a high level, we contribute to the literature that infers

consideration sets from the customer’s perspective without imposing any prior belief on the

consideration set formation. Our approach is rather general and completely data-driven. As

such, our model subsumes the existing models (e.g., [68]). We outline our main contributions as

follows.

∙ Theoretical contribution. We derive necessary and sufficient conditions in order for a col-

lection of observed choice probabilities to be consistent with an underlying GCC model.
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We then demonstrate that the GCC model can be identified from sales transactions data

alone. In particular, we provide a closed-form expression for computing distribution over

consideration sets from observed choice probabilities. We also show that when the consid-

eration sets are of size 𝑘 at most, the consideration set distribution can be recovered from

choice probabilities under offer sets of size 𝑘 at most.

∙ Methodological contribution. We demonstrate how to estimate the parameters of the GCC

model. We begin with the Maximum Likelihood Estimation (MLE) problem for the

restricted version of the GCC model, where customers sample items in their considera-

tion set independently. Formulating this problem as a mixed integer non-linear program

(MINLP), we show that it can be calibrated by solving a sequence of MILPs using the

outer-approximation algorithm. Then, in order to calibrate the GCC model, we provide

the EM-based algorithm by dividing customers into segments. Every segment is character-

ized by specific attention parameters for sampling consideration sets. We also propose a

methodology in order to model the consideration set formation of customers using machine

learning techniques (e.g., decision trees or random forests) that can account for product

attributes in a non-linear and tractable manner.

Robustness of demand prediction models in operational applications

In Chapter 3, we analyze various conditions and real-world scenarios in which choice models,

based on the consider-then-choose framework, provide a better predictive performance than

state-of-the-art benchmarks. First, we provide the results of an extensive simulation study that

demonstrates robustness of consider-then-choose models to the noise in offer sets. We find that

our model improves over the benchmark as we add more noise to offer sets in the synthetic

data. Interestingly, our model’s ability to outperform the benchmark is higher in scenarios when

benchmark predictions deteriorate. In this simulation study, we assume that noise results in an

estimate of the offer set, which is a superset of the true offer set. We also model real-world

scenarios when we do not know the offer set exactly, but we can determine a superset of the true

offer set. For example, this is true in retail settings where stockout events mask true offer set

information. The summary of major contributions in Chapter 3 is outlined below.
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∙ We compare the predictive performance of choice models using the IRI academic dataset

modeling several real-world scenarios when the retailer faces ambiguity in the offer sets.

Our predictive analysis across 20 product categories suggests that the relative performance

of our model over the benchmark improves once we switch to scenarios with a higher noise

level. Expectedly, we have only a moderate decrease in prediction accuracy when increasing

noise in the offer sets for consider-then-choose models. Moreover, the improvements of our

model vary significantly across product categories. We find a positive correlation between

the improvements of GCC over the benchmark and noise intensity. The latter is measured

as an average percentage of the items that are stocked out in a store, across product

categories.

∙ We also apply the proposed methodology to address the problem faced by online peer-to-peer

car-sharing platforms. To succeed in the long run, an online platform needs to make long-

term or medium-term demand predictions for the listed cars. The major problem is that the

company cannot rely on accurate data regarding car availability over time. Therefore, the

robustness of consider-then-choose models to the noise in the offer set definition plays an

important role in this context, as demonstrated in Chapter 3. Additionally, the proposed

framework’s flexibility enables us to estimate the choice model with non-linear in-product

attributes formation of consideration sets (e.g., decision trees or random forests), which

can significantly boost demand prediction performance. For example, using the industry

partner dataset, we find that the random forest-based consider-then-choose model outper-

forms the benchmark by more than 50% in terms of the RMSE metrics. We also provide

an explanatory analysis after calibrating our models using car feature information in order

to gain insight about the consideration set formation of renters. We find that some car

features are more important in explaining this consideration set formation than renter’s

preferences and vice versa. For example, our findings indicate that car age (as opposed

to rental price) plays a relatively more important role in the consideration set formation

than in the final choice. Our empirical analysis also suggests that the renters are more

likely to build their consideration sets based on car brands rather than car features, even

though customers are more likely to pay attention to car properties rather than brands

29



www.manaraa.com

while evaluating alternatives to their final choice.

30



www.manaraa.com

Part I

Personalized Operations

31



www.manaraa.com

32



www.manaraa.com

Chapter 1

Customized Retail Promotions and

Demand Estimation

1.1 Introduction

Recent advances in technology, the availability of individual-level transaction data, and analytics

have resulted in an expansion of opportunities for companies to engage in personalized operations.

Huge volumes of individual-level consumer information are collected from past purchases, through

loyalty programs or third party data-brokers (e.g., Acxiom), which contain highly detailed digital

profiles on many users. Today, we observe customized retail pricing in both online and offline

marketplaces. Online retailers, such as Amazon, have been offering personalized pricing for

several years now based on shoppers’ demographic information, geographical location, purchase

and search histories, and types of devices used for access [85].

Technological developments have altered the manner in which offline retailers can customize

their offers. Personalized promotions can now be implemented using electronic price tags or

beacon-based technology. These technologies have already been adopted. For instance, the

B&Q retail chain [78] uses electronic price tags. Stores such as Macy’s, Marsh supermarkets,

and Gamestop as well as mall developers such as Simon Property Group and Macerich, have all

tested the beacon-based technology. In fact, Simon Property Group installed about 4,800 beacons

over 192 malls to target customers using the Simon app, and in 2015, the top 100 retailers saw

approximately $4 billion of sales from the beacon-based technology. Another technological option
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for personalized in-store promotions is the use of computer vision. For instance, the Apricart’s

application [60] runs on a screen device attached to a shopping cart and provides customers

with a “throw-it-in-the-cart” and “pay-on-the-cart” checkout experience, while eliminating the

traditional checkout process and providing relevant content (e.g., real-time customized deals) by

detecting what goes in and out of the shopper’s cart.

Personalized promotions offer several benefits to retailers. They offer an effective tool for

individual-level price discrimination. They reduce competition by making the price paid by

customers opaque to other retailers, which is not always the same as the sticker price. They

also induce stronger relationships with customers, driving up sales. According to an Accenture

survey [97], more than 60% of customers want to participate in customized promotions and

explore real-time deals. Along the same lines, a more recent study conducted on 1,250 global

shoppers [11] reveals that 65% of customers appreciate personalized prices. It appears that

consumers appreciate services accompanied with personalization more than they dislike sharing

personal information about their purchasing habits [28].

Motivated by the significance of personalized promotions, we provide a full methodological

roadmap to run personalized promotions in retail setting. The required input data consists of

a history of sales transactions for a category of substitutable products (e.g., coffee in a grocery

store) tagged by individual customer IDs. With each transaction, the data also supplies the

set of products available for purchase (i.e., product availability) and the subset of items under

promotion. Using this data, the retailer must first infer customer-level preferences for items

within the category of analysis, which is used to predict each customer’s purchases in response

to the retailer’s promotion decisions. This inference problem faces three main challenges: (i) data

sparsity, because only a few observations per customer may be readily available for a particular

category, (ii) variation in the availability of products (e.g., due to stockouts), and (iii) presence of

promotions that may alter ex-ante customer choices. The first challenge is the most significant for

any personalized prediction. The latter two challenges complicate preference inference because

it is difficult to tell if a customer switched her purchase because of a change in preference, or

because of a stockout or promotion. Once customer-level preferences are estimated, the retailer

must decide an optimal subset of products to promote (if any) for each individual customer visit

to the store or website, with the objective of maximizing revenue from each visit.

34



www.manaraa.com

Our focus in this chapter is on the immediate-to-short-term brand switching effects of pro-

motion decisions. Therefore, we consider a retailer who wants to maximize immediate revenue

from a customer visit. Promotions also have medium-to-long-term effects, such as stockpiling,

consumption stimulation (leading to a general increase in product consumption levels), new cus-

tomer attraction, and customer retention (e.g., store, category, or brand loyalties). Our focus on

brand switching effects of promotions allows us to develop methods that address implementation

problems involving thousands of customers and millions of transactions. In the conclusion of this

thesis, we briefly comment on the ways in which our decision-making system can be extended

to account for some of the medium-to-long-term impacts of promotions. We also argue that our

proposal may still be helpful in mitigating the stockpiling effect.

1.1.1 Summary of results

The building block of our proposal is a nonparametric choice-based demand model where each

customer is characterized by a directed acyclic graph (DAG), representing a partial order among

products in a particular category. In the DAG, each product is represented by two nodes: a full

price version and a discounted counterpart. A directed edge from node 𝑎 to node 𝑏 indicates that

the customer prefers the product corresponding to node 𝑎 over the product corresponding to node

𝑏. The DAG captures the fact that customer preferences are acyclic. Unlike a full preference

list, a DAG specifies pairwise preferences for only a subset of pairs of products; therefore, it

represents a partial order. When visiting the store, the customer samples a full preference list

consistent with her DAG,1 according to a pre-specified distribution, and chooses the highest-

ranking available product.

Inferring customer preferences from transaction data consists of two key elements. The first

element is the construction of the DAGs. Starting from an empty graph (i.e., a collection of

isolated nodes representing products), and using historical data as a source of revealed preferences

for each individual, we start adding edges from the purchased product to the other products (i.e.,

nodes) offered, distinguishing between regular and discounted versions of the same product. This

process may lead to a graph with cycles, reflecting the fact that a number of “incorrect edges”

1By consistent we mean that all the pairwise relationships between products represented in the DAG are also
satisfied by the total order sampled by the customer in a store visit. This is formally stated in Section 1.2.1.
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could have been added along the way. In order to associate each customer with a partial order,

we run a decycling procedure with the objective of dropping spurious edges. The output of this

first phase is a DAG for each customer.

The second key element involves fitting a choice model that specifies the distribution with

which the customer samples full preference lists consistent with her DAG. We fit a multinomial

logit (MNL) model as well as a multiclass version. This estimation requires computing the

likelihood of the constructed DAGs, which is a computationally hard problem in general. In

order to ease the estimation process and the posterior prediction, we provide lower and upper

bounds for the likelihood of a DAG, which are easy to compute and which are then used as an

approximation for the exact probability.

The predictive power of our method is illustrated through an extensive set of numerical

experiments using real grocery panel data on purchases across two large U.S. markets in the year

2007. We split our dataset for each of 27 product categories into two parts. On the first half

(i.e., the training data), we perform the aforementioned two stages: DAG construction and MNL

estimation (both single and multi-class). Then, on the second half (i.e., the holdout sample), we

predict what each customer would purchase under our model when confronted with historical offer

sets and products on promotion. We compare our prediction with the reported purchase. Our

study demonstrates that our approach results in more precise and more fine-grained predictions

of customer choice behavior in comparison to state-of-the-art benchmarks that also incorporate

promotion effects. Specifically, we obtain up to an average of 14% improvement in prediction

accuracy, using standard measures, across the 27 product categories studied.

Confident in the predictive power of our model, we then use DAG construction outputs and

estimation stages as inputs to run personalized promotions. We formulate a mixed integer linear

program (MILP) that decides which products to promote when a particular customer, identified

by her DAG, faces a given offer set. We analyze two types of scenarios. The first focuses on the

setting in which the retailer runs personalized promotions in conjunction with mass promotions

already in place (as reported in the dataset). Thus, the retailer can personalize the promotion

of only those products not already under mass promotion. The second affords more flexibility to

the retailer and assumes that the retailer can personalize the promotion of any product on offer.

Our simulated results show average improvements of 16.7% and 23.9% respectively, for the two
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scenarios, across 27 categories, when compared to the existing promotion strategy in place.

The empirical validation of our model supports its use towards the implementation of cus-

tomized promotions in a systematic, data-driven manner. Another key advantage of our method

is that the DAG-based representation of preferences provides an intuitive and transparent in-

terpretation of the personalized promotion decision. This is an appealing feature for the retail

industry where several technically-sophisticated grocery chains still rely on manual processes to

decide price promotions based on a rule-of-thumb approach as well as past experience (e.g., see

[19]).

1.1.2 Related literature

This chapter touches upon two streams of literature: marketing and operations. While the use

of panel data as a source to estimate choice models is still limited in the operations literature,

it has been around for a while in the marketing field. A pioneering work in this regard is the

seminal paper by [38], where the authors fit an MNL model to household panel data on regular

ground coffee transactions, and which has led the way for choice modeling in marketing using

scanner panel data. [16] and [101] provide a detailed overview of choice modeling using panel

data in marketing. Much of this research stream focuses on understanding how various panel

covariates affect the individual choice process.

This chapter is most closely related to the body of empirical research within marketing

focused on developing a methodology for individual-level marketing policies. [103] provide a

decision-support system to optimize the timing and the depth of promotions for a given brand.

Their structural model accounts for three simultaneous components: interdependence in purchase

incidence, brand choice, and purchase quantity, and assumes that preferences (even for a single

customer) may vary over time. Like in our case, the building block for the model is the individual

household level, but the likelihood function is based on a latent class market structure, which

captures unobserved consumer heterogeneity. This function can be specified in closed form but

lacks convexity properties that would ease the estimation process and make it hard to scale to

a large number of alternatives in the category (in fact, in their experiments they report results

based on two categories with only four options each). The promotion decision problem considered

is also different. Whereas we focus on the optimal subset of brands to put on promotion, [103]
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assume that the retailer decides on a single brand or manufacturer to promote at a time. Given

the brand, the decision focuses on how to set discounted prices (both the timing and the depth

of promotions) for the next few store visits of a given individual. This price promotion problem

is highly non-linear and lacks any structural property that also makes it hard to scale for a large

number of variants in the category.

[56] develop a dynamic programming-based approach similar to the one in [103], but they use

individual-level coefficients to evaluate the benefits of optimizing customized promotions at the

level of each single customer. However, this twist makes their methodology even more computa-

tionally intractable, as for estimation, they need to use a Markov chain Monte Carlo procedure

to simulate the posterior distribution of the model parameters and to compute household level

estimates of preferences.

Our proposal here is rooted in a rank-based choice model of demand. This type of nonpara-

metric choice model specifies customer classes defined by their rank orderings of all alternatives

within the product category. When visiting the store, a customer is assumed to purchase the

available product with the highest ranking in her preference list, or to leave without making any

purchase. This model, which provides the full flexibility of random utility models, has been gain-

ing increasing attention in the OM-related literature [29, 66, 83, 95]. However, these references

still assume a market-level choice-based demand model.

In [52], a first step is taken towards the specialization of the rank-based choice model to cap-

ture and estimate individual preferences. In that paper, the authors propose to model individual

preferences through DAGs, but their construction is guided by heuristic definitions of the con-

sideration sets (e.g., see [39]). Therein, a customer samples a full preference list of items in the

product universe (along with the no purchase alternative) in accordance with her partial order,

forms a consideration set, and then buys the available product among the considered ones with

the highest ranking. Three models based on different consideration set definitions were studied:

i) standard, where the consideration set is equal to the offer set; ii) inertial, where the consid-

eration set is a subset of the offer set given by the previous purchase and the current products

on promotion; and iii) censored, which is a slight generalization of the inertial model. Both (ii)

and (iii) were designed to capture the inertia in choice [53], which is a principle claiming that

customers tend to stick to the same option when facing frequently purchased consumer goods.
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Motivated by the promising predictive results of that model (which was also successfully

applied recently to model preferences for virtual items in video games; [57]), in this chapter

we leverage the performance of the DAG-based approach with the objective of designing cus-

tomized promotions. Our contribution with respect to [52] spans several dimensions. First, our

consideration set formation is purely data-driven, providing greater flexibility without imposing

any prior beliefs on bounded rationality of individuals, such as the stickiness principle for the

aforementioned inertial model. This approach allows us to extend the coverage of the number of

individuals whose behavior our model can explain with non-empty DAG structures. Second, in

our new proposal we explicitly account for promotions as part of the DAG definition (and not

indirectly through the heuristic formation of the consideration set). Our method of incorporat-

ing promotions forms the fundamental backbone of the proposal. It provides clean managerial

insights about customer preferences (as explained later) and allows running promotion optimiza-

tion in a transparent way. Third, from a theoretical perspective, we develop tractable analytical

lower and upper bounds for the likelihood of DAGs under the MNL model. To this end it is

known that computing the exact likelihood is a #P-hard problem. The lower bound is indeed

the exact probability of a DAG when it is a forest of directed trees, as shown in [52]. Here,

we demonstrate that under some technical conditions, the bounds are asymptotically tight. In

addition, we derive tractable analytical lower and upper bounds for the MNL probability of a

customer choosing a specific product conditioning on her DAG and the available offer set. Fi-

nally, we address the promotion optimization problem as a key distinguishing feature of our work,

whereas in [52] the focus was limited to establishing the predictive power of the behavioral-based

DAG model.

1.2 Choice model description

This section formally introduces our general modeling framework, starting from some basic no-

tation and explaining the choice process derived from the customers’ DAGs. We continue with

the description of the data model that serves as input for our choice model, followed by the

presentation of the different phases involved in the DAG construction procedure. Next, we dis-

cuss the underlying assumptions for our model, and close the section with the formulation of the
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associated maximum likelihood estimation problem.

1.2.1 Modeling framework

Consider a category of 𝑛 substitutable products on which a set of 𝑚 individuals make purchases

over a finite horizon. Both the set of customers and the set of products remain constant over

time. Each product has two different versions: the regularly priced version and its promoted

counterpart. The promotion could be a price or display promotion or any form of product

presentation that highlights its presence on the shelf. We denote by 𝒩 the set {𝑎1, 𝑎2, . . . , 𝑎𝑛}

of regularly priced versions of the products. For any 𝑗 ∈ [𝑛] (i.e., 1 ≤ 𝑗 ≤ 𝑛), we let 𝑎𝑗+𝑛 denote

the promoted version of product 𝑎𝑗. Furthermore, we let 𝒩 ′ = 𝒩
⋃︀
{𝑎𝑛+1, 𝑎𝑛+2, . . . , 𝑎2𝑛} denote

the expanded product universe with the corresponding promoted counterparts.

The preferences of each customer over the product universe 𝒩 ′ are described through a

partial order, which could be visualized as a directed acyclic graph (DAG). A DAG 𝐷 consists

of 2𝑛 nodes, with two copies for each product (one for the non-promoted version, and one for

its promoted counterpart), and a collection of directed edges (or pairwise preference relations)

denoted by 𝐸𝐷 ⊂ {(𝑎𝑘, 𝑎𝑗) : 1 ≤ 𝑘, 𝑗 ≤ 2𝑛, 𝑘 ̸= 𝑗}, so that for any (𝑎𝑘, 𝑎𝑗) ∈ 𝐸𝐷 we have

that item 𝑎𝑘 is preferred to item 𝑎𝑗. With the assumption that a customer always prefers the

promoted version of a product over its regularly priced counterpart, the DAG has 𝑛 arcs of the

form (𝑎𝑗+𝑛, 𝑎𝑛).

The DAG captures the strong preferences the customer has over the products. These prefer-

ences remain constant from one purchase instance to the next one. For instance, suppose that

a customer always prefers caffeinated (regular) coffee over decaffeinated (decaf) coffee. Such a

customer will be captured by a DAG with preference edges from every regular coffee brand (pro-

moted or not) to every decaf coffee brand (promoted or not). The customer’s brand preferences

may change from one purchase instance to another, but she will always purchase regular coffee

over decaf coffee. Note that a customer may have no strong preferences, in which case her DAG

would be rather sparse (or even empty). At the other extreme, a customer may have very strong

preferences over all the products, in which case her DAG would be a total ordering over the 2𝑛

products. The DAGs provide us with a flexible tool to capture customers between these two

extremes.
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We will describe the complete process for constructing the DAG from the observed transaction

data below. But for now, given these DAGs, we describe the choice process. In general, DAGs

can only specify what a customer will not purchase – rather than what she will purchase – in

each store visit. For instance, in the example above, the DAG specifies that the customer will

not purchase decaf coffee in the presence of regular coffee, but it remains silent on which of the

regular coffee brands she will purchase. Because the preferences not present in the DAG may

change between purchase instances, we capture them through a probabilistic model. We let 𝜆

denote a distribution over all possible total orderings of the 2𝑛 products. A total ordering (unlike

a partial order) specifies the pairwise preferences for all possible
(︀
2𝑛
2

)︀
pairs. Equivalently, a total

ordering is a ranking (i.e., permutation or preference list) of the 2𝑛 products. In each interaction

with the retailer, the customer samples a ranking that is consistent with her DAG 𝐷 according

to distribution 𝜆 (to be estimated from data as explained below). She then chooses the most

preferred product according to the sampled ranking from a subset of products she considers from

among the offered products.

More formally, if 𝜎 denotes a preference list, 𝜎(𝑎𝑗) indicates the preference rank of product 𝑎𝑗.

A lower ranking indicates a higher preference order; in other words, we have that 𝑎𝑘 is preferred

to 𝑎𝑗 according to 𝜎, written as 𝑎𝑘 ≻𝜎 𝑎𝑗, if and only if 𝜎(𝑎𝑘) < 𝜎(𝑎𝑗). We say that a preference

list 𝜎 is consistent with partial order 𝐷 if and only if 𝜎(𝑎𝑘) < 𝜎(𝑎𝑗) for each (𝑎𝑘, 𝑎𝑗) ∈ 𝐸𝐷. Upon

arrival to the store a customer samples a full ranking 𝜎 consistent with her DAG 𝐷 according to a

distribution 𝜆. In other words, we can interpret any partial order 𝐷 as a censored representation

of the underlying full rankings 𝜎 that a customer could sample. Given the probability mass

function 𝜆(𝜎) for all full rankings 𝜎, we define 𝑆𝐷 as the set of rankings compatible with 𝐷, i.e.,

𝑆𝐷 = {𝜎 : 𝜎(𝑎𝑘) < 𝜎(𝑎ℓ) whenever (𝑎𝑘, 𝑎ℓ) ∈ 𝐷}. As a result, we can compute the likelihood of

DAG 𝐷 as follows:

𝜆(𝐷) =
∑︁
𝜎∈𝑆𝐷

𝜆(𝜎). (1.1)

In the store, the customer is offered a subset of products 𝑆 ⊂ 𝒩 ′. Naturally, at most one

element between 𝑎𝑗 and 𝑎𝑗+𝑛 is included in 𝑆. Let 𝐶 ⊆ 𝑆 denote the subset of products the

customer considers during this visit. Then, she purchases the most preferred product 𝑎𝑘 within

the set of considered products, i.e., 𝑎𝑘 = argmin𝑎𝑖∈𝐶 𝜎(𝑎𝑖). The customer could sample a different
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Figure 1-1: Choice process example with three products.

ranking, independently, in each store visit, but the ranking is always consistent with her DAG 𝐷.

Figure 1-1 illustrates the choice process for a particular store visit given a DAG 𝐷, a distribution

over full rankings 𝜆, and an offer set 𝑆. We do not impose any structural assumptions on how

the consideration set is formed by the customer. In the absence of any additional information, in

principle we assume that 𝐶 = 𝑆, i.e., the customer considers everything on offer (this is indeed

our approach in the numerics in Section 1.4).

We note that different customers may have different DAGs, but they all use the same dis-

tribution 𝜆 to sample the rankings. In other words, the distribution 𝜆 is a population attribute

whereas the DAG is an individual attribute. Even though the same distribution 𝜆 is being used

by all the customers, our model easily captures preference heterogeneity. For instance, the dis-

tribution 𝜆 could be a latent-class multinomial logit (LC-MNL) model, which assumes that the

population is comprised of 𝐾 latent classes and the preferences of each class of customers is de-

scribed by a different MNL model, thereby allowing for preference heterogeneity. In addition, the

rankings sampled by customers must be consistent with their respective DAGs, so the effective

distribution used for each customer is the conditional distribution 𝜆 given her DAG. Because

DAGs differ across customers, these conditional distributions will also differ.

1.2.2 Data model

Our data model is the same as the one used in [52]. We consider a dataset with transactions

tagged by the IDs from 𝑚 customers. For a given customer 𝑖, we consider a training horizon of

𝑇𝑖 transactions of the form (𝑎𝑗𝑖𝑡 , 𝑆𝑖𝑡), for 𝑡 = 1, 2, . . . , 𝑇𝑖, that we use to infer her partial order

of preferences. The offer set is 𝑆𝑖𝑡 ⊂ 𝒩 ′, and 𝑎𝑗𝑖𝑡 ∈ 𝑆𝑖𝑡 denotes the product she purchased in
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period 𝑡.

The subset 𝑃𝑖𝑡 ⊂ 𝑆𝑖𝑡 denotes the set of promoted products in period 𝑡. In our dataset the

promotion could be either display or price. In our numerics we restrict to price promotions, and

in particular we consider the promotion feature as a binary attribute of a product. That is, we do

not distinguish between different levels of price promotions although our model could be easily

extended to account for a finite number of price discount points by simply adding a product copy

(i.e., node) for each discount level in the discrete set.

In order to partially mitigate the data sparsity issue, in our implementation we aggregate

products within a category by brand, so as to have at least a few observations of offerings and

purchases for each of the items.

1.2.3 DAG construction

We now describe how we build the DAG for each customer using her historical purchase transac-

tions within the category. We process customer transactions one-at-a-time to dynamically build

the DAG. The whole process involves four steps, but at the core, it relies on a set of preference

inferences made from each transaction. In order to illustrate the process and its challenges,

consider a transaction in which the customer was offered products 𝑎 and 𝑏 and she purchased

product 𝑎. Given this transaction, we can reason that there are three different possibilities:

(i) the preference 𝑎 ≻ 𝑏 is strong and so the edge (𝑎, 𝑏) must be part of the customer’s DAG;

(ii) the preference 𝑎 ≻ 𝑏 is not a strong preference and the customer simply sampled a rank-

ing 𝜎 with 𝜎(𝑎) < 𝜎(𝑏) for this purchase instance, so neither edge (𝑎, 𝑏) nor (𝑏, 𝑎) should be

part of the customer’s DAG (if the edge (𝑏, 𝑎) were part of the DAG, then the preference list 𝜎

with 𝜎(𝑎) < 𝜎(𝑏) would never be sampled because it would be inconsistent with the DAG); and

(iii) product 𝑏 was not considered by the customer and therefore, we cannot make any inferences

about the preference relation between 𝑎 and 𝑏 in the DAG (in fact, it is perfectly possible for

𝑏 ≻ 𝑎 in the DAG, but it would not matter because as far as the customer is concerned, product

𝑏 was never under consideration). All three inferences are consistent with our model, and there-

fore, more than one DAG is consistent with the given data. Our challenge lies in identifying the

set of DAGs that are consistent with the given data, and then using a reasonable criterion to

pick one from this set.
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At a high level, we deal with the above challenge in the DAG construction by first building

a directed graph 𝐺 including what we call candidate edges. A candidate edge is an edge that

we are unsure of, with the understanding that it may be removed at a later stage in the DAG

construction process. As seen below, the graph 𝐺 allows us to keep track of the set of DAGs

that are consistent with the given transaction data. We then make an identification assumption

to pick a DAG that is a subgraph of 𝐺. To keep our presentation clean, we first describe all

the steps involved in constructing a DAG. We then discuss in Section 1.2.4 all the assumptions

implicit in our DAG construction process. Figure 1-2 illustrates the DAG construction process

for a small running example with four products (𝑛 = 4) and three transactions (𝑇 = 3), following

the sequence of four phases below.

Phase 0: Initializing the preference graph with edges from promoted versions to

corresponding non-promoted versions of products. We start from an empty graph 𝐺,

and add 2𝑛 isolated nodes from the product universe 𝒩 ′, where each node represents either a

non-promoted or a promoted version of a product. Let 𝐸𝐺 denote the set of edges in the graph 𝐺.

Starting from the empty set 𝐸𝐺, we add 𝑛 edges (𝑎𝑗+𝑛, 𝑎𝑗) for each non-promoted item 𝑎𝑗, 𝑗 ∈ [𝑛].

These edges capture the fact that a promoted copy 𝑎𝑗+𝑛 of every product 𝑎𝑗 ∈ {𝑎1, . . . , 𝑎𝑛} is

preferred to its regularly priced copy 𝑎𝑗 since both products have the same attributes except

the promotion feature. Note that these are not candidate edges because we are certain of their

presence in the final DAG.

Phase 1: Adding candidate edges from sales transactions. We incrementally add can-

didate edges to the preference graph 𝐺 by processing the customer’s transactions one-at-a-time.

For each transaction (𝑎𝑗𝑖𝑡 , 𝑆𝑖𝑡) of individual 𝑖, we draw edges from 𝑎𝑗𝑖𝑡 to the other items in the

offer set, i.e., 𝐸𝐺 ← 𝐸𝐺 ∪
{︀
(𝑎𝑗𝑖𝑡 , 𝑎ℓ) : ∀𝑎ℓ ∈ 𝑆𝑖𝑡 ∖ {𝑎𝑗𝑖𝑡}

}︀
. These edges signify that potentially

all the offered products were considered by the individual, and all preference edges were indeed

“strong” preferences (i.e., they are all part of the DAG and not just sampled preferences). We

keep track of the purchase events where each edge (𝑎𝑗, 𝑎ℓ) is added through the weight 𝑤𝑗ℓ,

defined as the number of times the customer chose product 𝑎𝑗 when 𝑎ℓ was also offered.

Phase 2: Adding implicit candidate edges. In order to make the DAG denser, we enrich it

with implicit candidate edges, based on the assumption that if a customer has a strong preference
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Figure 1-2: Phases of DAG construction. The example with four products and three transactions.

between the non-promoted (promoted) copies of two products, then the preference extends also

to the corresponding promoted (non-promoted) copies. More precisely, for any 1 ≤ 𝑗, ℓ ≤ 𝑛, if

(𝑎𝑗, 𝑎ℓ) ∈ 𝐸𝐺, then we add the edge (𝑎𝑗+𝑛, 𝑎ℓ+𝑛) to 𝐺, i.e., 𝐸𝐺 ← 𝐸𝐺 ∪ {(𝑎𝑗+𝑛, 𝑎ℓ+𝑛)}. Similarly,

if (𝑎𝑗+𝑛, 𝑎ℓ+𝑛) ∈ 𝐸𝐺, then we add the edge (𝑎𝑗, 𝑎ℓ) to 𝐺, resulting in 𝐸𝐺 ← 𝐸𝐺∪{(𝑎𝑗, 𝑎ℓ)}. To de-

emphasize the implicit counterparts of these edges, we assign the weight 𝑤𝑗+𝑛,ℓ+𝑛 ← 𝑤𝑗,ℓ/(𝑇𝑖𝑛
2)

when (𝑎𝑗+𝑛, 𝑎ℓ+𝑛) is the implicit edge, and 𝑤𝑗,ℓ ← 𝑤𝑗+𝑛,ℓ+𝑛/(𝑇𝑖𝑛
2) when (𝑎𝑗, 𝑎ℓ) is the implicit

edge. In other words, the weights of the implicit counterparts are scaled down by a factor of 𝑇𝑖𝑛
2.

Intuitively, by scaling down the weights of the implicit edges, we prioritize candidate edges over

implicit candidate edges, since candidate edges inferred directly from the revealed preferences of

customers are likely to be more informative. The reason for this precise choice of scaling factors

will become clear below.

Phase 3: Graph decycling. This is a critical step in the DAG construction process, in

which we attempt to eliminate the spurious edges added in 𝐺 so far to arrive at the final DAG,

where by spurious we mean that the edge contradicts the interpretation of other edges in the

graph. The first indication that there are spurious edges in 𝐺 is the presence of directed cycles.

As discussed above, the data does not identify the DAG and therefore, we need to make an
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identification assumption to arrive at the final DAG from 𝐺. We assume that the underlying

DAGs of customers are large, so we find the largest weight DAG that is supported by the choice

observations. In other words, we assume that all candidate and implicit candidate edges are part

of the underlying DAG, unless contradicted by data. This assumption translates to deleting cycles

from 𝐺 while maximizing the aggregate weight of the edges retained (or similarly, minimizing

the total weight of the edges deleted). This problem is known in the graph theory literature as

the minimum weight feedback arc set problem and is known to be NP-hard even when all weights

are equal to 1 ([55] provides a reduction from the minimum vertex cover problem).

We formulate the above decycling procedure as a mixed integer linear program (MILP). For

a given graph 𝐺, and for every edge (𝑎𝑘, 𝑎ℓ) ∈ 𝐸𝐺, define the binary variable 𝑥𝑘ℓ that takes the

value 1 if edge (𝑎𝑘, 𝑎ℓ) is finally retained in the induced acyclic subgraph 𝐷 ⊂ 𝐺, and takes value

zero otherwise. To ensure that the DAG defined by the variables {𝑥𝑘,ℓ : (𝑎𝑘, 𝑎ℓ) ∈ 𝐸𝐺} does not

contain cycles, we introduce auxiliary binary variables 𝑦𝑘,ℓ, for all 1 ≤ 𝑘, ℓ ≤ 2𝑛 and 𝑘 ̸= ℓ.

These variables represent a total order over all the products in 𝒩 ′ with 𝑦𝑘,ℓ = 1 if 𝑎𝑘 is preferred

over 𝑎ℓ, and 𝑦𝑘,ℓ = 0 otherwise. The following MILP enforces that the final DAG is a subset of

some total order defined by the 𝑦 variables:

max
𝑥,𝑦

∑︁
(𝑎𝑘,𝑎ℓ)∈𝐸𝐺∖{(𝑎𝑗+𝑛,𝑎𝑗) : 1≤𝑗≤𝑛}

𝑤𝑘ℓ 𝑥𝑘ℓ (1.2)

s.t.: 𝑥𝑘+𝑛,𝑘 = 1, ∀ 1 ≤ 𝑘 ≤ 𝑛 (C1)

𝑥𝑘,ℓ = 𝑦𝑘,ℓ, ∀(𝑎𝑘, 𝑎ℓ) ∈ 𝐸𝐺, (C2)

𝑦𝑘ℓ + 𝑦ℓ𝑘 = 1, ∀𝑎𝑘, 𝑎ℓ ∈ 𝒩 ′, 𝑘 ≤ ℓ, (C3)

𝑦𝑘ℓ + 𝑦ℓ𝑝 + 𝑦𝑝𝑘 ≤ 2, ∀𝑎𝑘, 𝑎ℓ, 𝑎𝑝 ∈ 𝒩 ′, 𝑘 ̸= ℓ ̸= 𝑝, (C4)

𝑦𝑘,ℓ ∈ {0, 1} ∀𝑎𝑘, 𝑎ℓ ∈ 𝒩 ′, 𝑘 ≤ ℓ.

The constraints guarantee that the induced subgraph 𝐷 defined by those edges (𝑎𝑘, 𝑎ℓ) ∈ 𝐸𝐺

for which 𝑥𝑘ℓ = 1, is a DAG. The first set of equalities (C1) ensures that all the edges added in

Phase 0 are retained in the final DAG. The second set of equalities (C2) ensure that the DAG 𝐷

defined by the variables 𝑥 is a subset of the graph defined by the total order corresponding

to the variables 𝑦. The third (C3) and fourth (C4) constraints together ensure that 𝑦 indeed

46



www.manaraa.com

defines a total order. Specifically, the third set of constraints ensures that either 𝑎𝑘 is preferred

over 𝑎ℓ or 𝑎ℓ is preferred over 𝑎𝑘 but not both, and the fourth set of constraints imposes the total

ordering among any three products. The correctness of the MILP is shown in Proposition 1 in

Section 4.2.1 in the Appendix. This proposition shows that the MILP maximizes the weight of

the candidate edges in the resulting DAG, and it never deletes a candidate edge if an implicit

candidate edge can be deleted to break a directed cycle.

The size of the MILP (1.2) scales quadratically with 𝑛 in the number of variables and cubically

in the number of constraints. In Section 4.3 in the Appendix we propose a greedy heuristic to

approximately solve the preference graph decycling in polynomial time. We compare the output

DAGs of the heuristic and MILP (1.2) on our dataset and observe that under the heuristic we

obtain only 0.4% sparser DAGs (in aggregate), which indicates its promising applicability in

other real size problems.

1.2.4 Discussion of the model assumptions and the DAG construction

procedure

We now discuss the most relevant assumptions we make for developing the model and constructing

the DAGs.

Model assumptions. The assumption that the product universe 𝒩 ′ and the set of customers

remains constant over a finite horizon is needed to infer the customer DAGs. Echoing [52],

our approach can be run periodically to update the DAGs and incorporate new customers. In

between updates, new products in the category can be considered as part of a family of products

(say, products of the same brand represented by only two elements: 𝑎ℓ and 𝑎𝑛+ℓ), which is the

minimal level of data aggregation that we consider.

Note that in our presentation, without loss of generality, we do not provide a special treatment

to the always available, no-purchase option. This option can be handled in the same way as other

items in the product universe except that only one copy of this alternative would be part of the

DAG, i.e., the no-purchase option can be represented by a particular node in the DAG, say 𝑎0.

DAG construction assumptions. There are two key distinctions between the DAG construc-
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tion process here and the one in [52]. First and foremost, our proposal here is purely data-driven

and in Phase 1 mirrors the standard consideration set definition therein (under which the con-

sumer chooses among all the products in the offer set), though accounting explicitly for promoted

products, here represented by node entities. The other two models presented in [52], inertial and

censored, which actually showed the best predictive performance, are based on behavioral rules

to build the consideration sets.

The second key distinction is the way we address apparent inconsistencies in the purchasing

behavior of a customer. According to [52], during the DAG construction process, as soon as

the addition of arcs into a customer DAG 𝐷𝑖 implies the creation of a cycle or the customer’s

transaction can not be explained by the pre-specified behavioral assumptions, the process stops

and all the arcs are deleted, keeping 𝐷𝑖 as the empty DAG (i.e., a collection of isolated nodes).

In such case, no structure is superimposed and the customer could be described by a standard

choice-based demand model (e.g., a typical, single-class MNL). In our new proposal, Phase 2

could end with a graph with cycles, which are then deleted in Phase 3. In the context of our

model, cycles could originate because of spurious edges introduced for reasons (ii) and (iii) laid

out in Section 1.2.3. Under this interpretation, consumers are fully rational and the modeler

incorrectly added edge (𝑎, 𝑏) either because 𝜎(𝑎) < 𝜎(𝑏) in the particular ranking 𝜎 sampled in

this particular store visit (although (𝑎, 𝑏) is not a strong preference, case (ii)), or because the

modeler incorrectly assumed that 𝑏 was part of the consideration set (case (iii)). As discussed

in the description of Phase 3, our decycling procedure deletes a minimum number of spurious

edges added along the way.

Another possible way to rationalize the decycling process is model misspecification. Cus-

tomers exhibit a bounded rational behavior, including possible inconsistencies in their purchases.

In this case, the addition of candidate edges in Phase 1 assuming that the consideration set of the

customer is indeed the entire offer set is correct for that purchase instance, but the customer is

inconsistent over time. The decycling step in Phase 3 provides the largest DAG that is sustained

by the customer’s inconsistent purchase behavior although that behavior over time cannot be

explained by a DAG.

The identification assumption that the underlying customer DAGs are large is driven by our

desire to retain a rich representation of the customers’ strong preferences. This assumption is
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reasonable for product categories in which customers make repeated purchases, which increases

their familiarity of the product category, allowing them to develop strong preferences. Grocery

categories are a good example of that, as also evidenced by our empirical study. One can imagine

other assumptions that are appropriate in particular settings. Such assumptions will result in a

different decycling step and adjustments in the corresponding MILP, while keeping the rest of

our framework intact.

Another point that deserves discussion is the addition of implicit candidate edges. These

edges are not directly revealed in the customer’s choices. So the customer may have revealed

that 𝑎𝑘 is preferred over 𝑎ℓ, but she has not revealed if the same preference extends to their

respective promoted copies 𝑎𝑘+𝑛 and 𝑎ℓ+𝑛. Yet, we make the assumption that the customer is

likely to prefer 𝑎𝑘+𝑛 over 𝑎ℓ+𝑛. The reason is that strong preferences of the customer (those

that are part of the DAG and do not change from one purchase instance to next) are likely to

be driven by characteristics other than promotion activity, which does vary from one visit to

another. As an example, a customer may prefer regular coffee to decaf coffee because of taste.

Such a customer would continue to prefer regular coffee over decaf coffee even if both of them are

on promotion. There is still the possibility that our assumption is wrong in specific cases because

of which we scale down the weights of implicit edges by 𝑇 2
𝑖 𝑛. Proposition 1 in Section 4.2.1 in

the Appendix shows that with this scaling the MILP strictly prioritizes implicit candidate edges

over the candidate edges for deletion. Overall, since we do not observe whether the pairwise

comparisons in the DAG are correct or spurious, we test empirically whether it is effective to

add those implicit edges in the preference DAG (see Section 1.5 in the Appendix). We notice

that by adding implicit edges in the DAG construction process and obtaining denser DAGs, the

improvements in the prediction performance are significant.

1.2.5 Maximum likelihood estimation of the DAG-based choice model

Once we infer the customers’ DAGs, we use maximum likelihood estimation (MLE) to calibrate

a probability distribution over the full rankings consistent with these DAGs. In order to compute

the panel data log-likelihood function, we consider only revealed preferences that are consistent

with the inferred DAGs. That is, if during the DAG construction process no cycle was formed,

then every transaction pair (𝑎𝑗𝑖𝑡 , 𝑆𝑖𝑡) (which is a star graph with head 𝑎𝑗𝑖𝑡 and set of leaves 𝑆𝑖𝑡 ∖
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{𝑎𝑗𝑖𝑡}), is a subgraph of the corresponding DAG𝐷𝑖. In case a cycle was formed, say for customer 𝑖,

consider a transaction (𝑎𝑗𝑖𝑡 , 𝑆𝑖𝑡) such that one of the edges (𝑎𝑗𝑖𝑡 , 𝑎𝑘), with 𝑎𝑘 ∈ 𝑆𝑖𝑡 ∖ {𝑎𝑗𝑖𝑡}, was

deleted in the decycling procedure. Since (𝑎𝑗𝑖𝑡 , 𝑎𝑘) was part of a cycle, it follows that there is a

directed path from 𝑎𝑘 to 𝑎𝑗𝑖𝑡 in the final DAG 𝐷𝑖. This implies that conditioned on the customer

having DAG 𝐷𝑖, she did not consider product 𝑎𝑘 when choosing 𝑎𝑗𝑖𝑡 even though 𝑎𝑘 was on offer.

Therefore, product 𝑎𝑘 can be ignored for computing data log-likelihood.

Once we filter out these inconsistent preferences, the likelihood function that we maximize

to calibrate the model is just the sum of likelihoods of customers’ partial orders, i.e.,

logℒ(Panel Data) =
𝑚∑︁
𝑖=1

log 𝜆(𝐷𝑖) =
𝑚∑︁
𝑖=1

log

⎛⎝∑︁
𝜎∈𝑆𝐷𝑖

𝜆(𝜎)

⎞⎠.
See Proposition 2 in Section 4.2.1 in the Appendix for a formal justification of this log-likelihood

expression.

Finally, note that the tractability of the MLE problem depends on the distribution 𝜆 over

preference lists, e.g., the log-likelihood function is concave under the MNL/Plackett-Luce distri-

bution.

1.3 Theoretical analysis of the DAG-based MNL Model

We now focus on two computational problems that arise in using our model with data: computing

(a) the probability of a DAG 𝐷 and (b) the choice probability given an offer set 𝑆 conditioned on

a DAG 𝐷. The first computation is needed to solve the estimation problem discussed above, and

the second one is needed to predict the purchase of a customer with DAG 𝐷. Both computations

are difficult for a general DAG 𝐷. In fact, even the problem of counting the number of total

orders that are consistent with a given DAG 𝐷 (i.e., the size of set 𝑆𝐷) is a #P-hard problem [7].

For that reason, we limit our attention to the standard Plackett-Luce (PL) [69] model for the

underlying distribution 𝜆 over rankings, for which at least there is a closed form expression for

the likelihood of a ranking. In the PL model, each product 𝑎 ∈ 𝒩 is associated with parameter
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(i.e., weight) 𝑣𝑎 > 0. The probability of sampling ranking 𝜎 is given by

𝜆(𝜎) =
𝑛∏︁

𝑟=1

𝑣𝜎𝑟∑︀𝑛
𝑗=𝑟 𝑣𝜎𝑗

.

For brevity of notation, we also use 𝑣𝑗 to refer to 𝑣𝑎𝑗 , for a given indexing of the products. As

shown by [51], the choice probabilities under the PL model are consistent with those under a

standard MNL model with the same parameters (𝑣𝑎)𝑎∈𝒩 . In other words, we have

Pr(𝑎𝑖|𝑆) =
𝑣𝑖∑︀

𝑎𝑗∈𝑆 𝑣𝑗

under both the PL and MNL models. Under the PL model, the choice probability Pr(𝑎𝑖|𝑆) is

equal to the probability of a star DAG with edges from product 𝑎𝑖 to all the products in the

set 𝑆 ∖ {𝑎𝑖} because this DAG always results in the choice of 𝑎𝑖 from 𝑆. The choice probability

under the MNL model, on the other hand, can be derived from its random utility specification [5].

Because of this equivalence of both models on the choice probabilities, we use the terms PL and

MNL interchangeably.

1.3.1 Tractable analytical bounds for the likelihood of a DAG

We first focus on the problem of computing the likelihood 𝜆(𝐷) =
∑︀

𝜎∈𝑆𝐷
𝜆(𝜎) of a DAG 𝐷 under

the PL model. [52] derive a closed form expression for 𝜆(𝐷) when 𝐷 satisfies a special structure.

To state the result, we introduce the concept of reachability. The reachability function Ψ𝐷 of

DAG 𝐷 maps each node 𝑎 to the set of nodes that can be reached from 𝑎 through the edges in 𝐷.

More precisely, Ψ𝐷(𝑎) = {𝑏 : there is a directed path from 𝑎 to 𝑏 in 𝐷}. We assume that a node

is reachable from itself, so 𝑎 ∈ Ψ𝐷(𝑎) for all 𝑎, and Ψ𝐷 is always non-empty. The DAG 𝐷 is

equivalently described by the reachability function Ψ𝐷(·) of its nodes. Without loss of generality,

we represent the DAG 𝐷 by its unique transitive reduction, which is the unique graph with the

fewest number of edges possible and the same reachability function as 𝐷. We start from DAGs

that are forests of directed trees2 with unique roots, where root is any node with no incoming

2A directed tree is a connected and directed graph that would still remain acyclic if the directions are ignored.
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edges. It is then shown in [52, Proposition 3.2] that

𝜆(𝐷) =
∏︁
𝑎∈𝒩

𝑣𝑎∑︀
𝑎′∈Ψ𝐷(𝑎) 𝑣𝑎′

, (1.3)

whenever 𝐷 is a forest of directed trees, each with a unique root.

[52] propose to use the equation (1.3) to approximate the probability of a general DAG,

even if it is not a directed tree. For the general case, they do not provide any guarantees for this

approximation, suggesting that computing the probability of a DAG is difficult in the presence of

v-nodes, defined as the nodes with at least two incoming edges. We now show that equation (1.3)

provides a lower bound approximation for the probability of a general DAG. In particular, we

establish the following result.

Proposition 1.3.1. Under the PL model, we have that for any DAG 𝐷,

𝜆̃(𝐷) ≤ 𝜆(𝐷), where 𝜆̃(𝐷) :=
∏︁
𝑎∈𝒩

𝑣𝑎∑︀
𝑎′∈Ψ𝐷(𝑎) 𝑣𝑎′

.

The inequality above is strict if 𝐷 has at least one v-node.

The proof is rather involved and the details are provided in Section 4.2.1 in the Appendix.

Here, we provide a sketch. The proof uses induction on v-degree, 𝑘, of 𝐷, defined as the sum of

the degrees of the v-nodes in 𝐷 minus the number of v-nodes. The base case of 𝑘 = 0 follows

from the equation (1.3) because the v-degree of 𝐷 is zero if and only if 𝐷 is a forest of directed

trees, each with a unique root. To establish the induction step, we consider a DAG with v-degree

of 𝑘 + 1 and carry out the following “splitting” operations to create a DAG with v-degree of at

most 𝑘, in order to apply the induction hypothesis. We pick a v-node 𝑎𝑦 with the property that

the subgraph 𝐷[𝑎𝑦] “hanging” from node 𝑎𝑦 – which is induced by 𝐷 on the set of nodes Ψ𝐷(𝑎𝑦)

– is a directed tree. Such a v-node always exists (at the minimum, it is a leaf in the DAG). Then,

we split 𝐷 into DAG 𝐷[𝑎𝑦] and the remaining DAG 𝐷̄[𝑎𝑦], which is induced by 𝐷 on the set of

nodes (𝒩 ∖ Ψ𝐷(𝑎𝑦)) ∪ {𝑎𝑦}. We then split the node 𝑎𝑦 in DAG 𝐷̄[𝑎𝑦] to create a new copy 𝑎′𝑦

such that one of the incoming edges into 𝑎𝑦 moves to the node 𝑎′𝑦 while the other incoming edges

remain with node 𝑎𝑦, resulting in the DAG 𝐷split
𝑦 . This splitting operation results in new nodes

for which the PL parameters values must be appropriately defined. With these parameter values,

52



www.manaraa.com

we show that our splitting operation can only reduce the probability of the resulting collection

of DAGs. We then establish the result by invoking the induction hypothesis on 𝐷split
𝑦 , which by

construction has a v-degree of at most 𝑘.

An upper bound for the likelihood of a DAG 𝐷 can be readily obtained by deleting some

edges in 𝐷. Deleting an edge strictly increases the set of permutations that are consistent with

the DAG, so for any 𝐷̄ ⊂ 𝐷, we have that 𝑆𝐷̄ ⊃ 𝑆𝐷, where recall that 𝑆𝐷 is the set of all

rankings that are consistent with 𝐷. It thus follows that 𝜆(𝐷̄) ≥ 𝜆(𝐷). We state this result

formally in the following proposition and prove it in Section 4.2.1 in the Appendix.

Proposition 1.3.2. For any two DAGs 𝐷 and 𝐷̄ such that 𝐷̄ ⊂ 𝐷, we must have that 𝜆(𝐷) ≤

𝜆(𝐷̄), with strict inequality under the PL model if all the parameter values are strictly positive.

Note that the above result is true for any distribution 𝜆 and not just for the PL model. To

obtain a tractable upper bound under the PL model, we choose a DAG 𝐷̄ that is a forest of

directed trees, each with a unique root. Multiple such DAGs may exist and we can pick the one

that provides the tightest upper bound. Finding the optimal DAG 𝐷̄ is a hard problem, so we

propose a greedy heuristic that recursively deletes all, except one, of the incoming edges to each

of the v-nodes in the DAG. See Section 4.5 in the Appendix for details of the algorithm.

Next we explore the tightness of the developed lower and upper bounds of a DAG’s likelihood.

Let 𝑅(𝐷, 𝐷̄) = 𝜆(𝐷̄)/𝜆̃(𝐷) denote the ratio between them for any DAG 𝐷̄ ⊂ 𝐷. It is clear that

𝑅(𝐷, 𝐷̄) ≥ 1 for all 𝐷̄ ⊂ 𝐷, so we express our tightness guarantee by deriving a parametric upper

bound for 𝑅(𝐷, 𝐷̄). For that, let ℓ denote the size of the largest reachability set in DAG 𝐷, i.e.,

ℓ = max𝑎∈𝒩 |Ψ𝐷(𝑎)|, and let 𝑝 denote the number of nodes with v-nodes in their reachability

sets, i.e., 𝑝 = |{𝑎 ∈ 𝒩 : ∃ v-node 𝑏 ∈ Ψ𝐷(𝑎)}|. Further, let Δ := max𝑎∈𝒩 max𝑏∈Ψ𝐷(𝑎)∖{𝑎} 𝑣𝑏/𝑣𝑎 be

the maximum ratio between the weights of nodes within the same directed path in the DAG. We

can derive the following guarantee:

Proposition 1.3.3. Consider DAGs 𝐷 and 𝐷̄ such that 𝐷̄ ⊂ 𝐷 is obtained by deleting all,

except one, of the incoming edges into each of the v-nodes. Then, we have that

0 ≤ log𝑅(𝐷, 𝐷̄) ≤ 𝑝 · log(1 + ℓ ·Δ).

Then, if Δ ∈ 𝑜(𝑛−2), where 𝑛 is the number of nodes, then we have that lim𝑛→∞ 𝜆̃(𝐷) = 𝜆(𝐷).
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The proof is given in Section 4.2.1 in the Appendix. Note that the bound above applies to

any DAG 𝐷̄ that satisfies the conditions stated in the proposition; in particular, it applies to

the DAG 𝐷̄ that is constructed using the heuristic described in Section 4.5 in the Appendix.

The above result shows that our approximation guarantee depends on the number of v-nodes in

the DAG (more precisely, on the number of nodes with v-nodes in their reachability sets) and

the ratio Δ of PL parameters. The bound is derived in the most general setting, and in this

generality, it is tight. For instance, when there are no v-nodes, then 𝑝 = 0 and we obtain the

guarantee 𝑅(𝐷, 𝐷̄) = 1, as expected.3 In several other cases, however, the bound can be weak.

In fact, we show on the actual sales data that the approximation ratio 𝑅(𝐷, 𝐷̄) can be much

smaller than what is suggested by our theoretical bound.

1.3.2 Tractable analytical bounds for the purchase probability pre-

diction

We now turn to the prediction problem, that of predicting the probability that a customer with

DAG 𝐷 purchases product 𝑎𝑗 from offer set 𝑆. Recall that a customer with DAG 𝐷 always

samples a preference list 𝜎 that is consistent with 𝐷, i.e., 𝜎 ∈ 𝑆𝐷. The probability that such a

customer will purchase product 𝑎𝑗 from offer set 𝑆 is then equal to the conditional probability

that the sampled permutation is consistent with the star DAG 𝐶(𝑎𝑗, 𝑆), in which there are edges

only from 𝑎𝑗 to all the products in 𝑆 ∖ {𝑎𝑗}. Then, the probability 𝑓(𝑎𝑗, 𝑆,𝐷) that the customer

will purchase 𝑎𝑗 from 𝑆 is given by

𝑓(𝑎𝑗, 𝑆,𝐷) = Pr
(︀
𝑆𝐶(𝑎𝑗 ,𝑆)|𝑆𝐷

)︀
=

Pr
(︀
𝑆𝐶(𝑎𝑗 ,𝑆) ∩ 𝑆𝐷

)︀
Pr(𝑆𝐷)

,

where the second equality follows from the Bayes rule. Now, given any offer set 𝑆, let ℎ𝐷(𝑆) ⊂ 𝑆

denote the subset of “heads” (i.e., the subset of nodes without parents) in the subgraph of the

transitive closure of 𝐷 restricted to set 𝑆. Since it follows by definition that every node in

𝑆 ∖ ℎ𝐷(𝑆) has at least one incoming edge from a node in ℎ𝐷(𝑆), the customer with DAG 𝐷

will never purchase the products in 𝑆 ∖ ℎ𝐷(𝑆). Therefore, we obtain that 𝑓(𝑎𝑗, 𝑆,𝐷) = 0 for

all 𝑎𝑗 ∈ 𝑆 ∖ ℎ𝐷(𝑆). For the products in ℎ𝐷(𝑆), the probability of choosing 𝑎𝑗 from 𝑆 depends

3Note that in the absence of v-nodes, then any connected component must have a single root.
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on the probability of the DAG representing the collection of permutations 𝑆𝐶(𝑎𝑗 ,𝑆) ∩ 𝑆𝐷, which

corresponds to the merged DAG 𝐷⊎𝐶(𝑎𝑗, 𝑆) obtained by taking the union of the graphs 𝐷 and

𝐶(𝑎𝑗, 𝑆). We thus obtain

𝑓(𝑎𝑗, 𝑆,𝐷) =

⎧⎪⎨⎪⎩
𝜆(𝐷⊎𝐶(𝑎𝑗 ,𝑆))

𝜆(𝐷)
, if 𝑎𝑗 ∈ ℎ𝐷(𝑆),

0, otherwise,

In computing the choice probabilities for the products in ℎ𝐷(𝑆), we run into similar #P-

hardness issues as mentioned above. To deal with this challenge, [52] focus on the special case

when 𝐷 is a forest of directed trees, each with a unique root, and all the nodes in ℎ𝐷(𝑆) are

roots in 𝐷. With these assumptions, [52, Proposition 3.3] shows that

𝑓(𝑎𝑗, 𝑆,𝐷) =
𝜆̃(𝐷 ⊎ 𝐶(𝑎𝑗, 𝑆))

𝜆̃(𝐷)
=

𝑣Ψ𝐷(𝑎𝑗)∑︀
𝑎ℓ∈ℎ𝐷(𝑆) 𝑣Ψ(𝑎ℓ)

,

where we define 𝑣Ψ𝐷(𝑎) =
∑︀

𝑏∈Ψ𝐷(𝑎) 𝑣𝑏. More generally, they propose to use the above expression

as an approximation, but do not provide any performance guarantee. We can now use the results

of Propositions 1.3.1 and 1.3.2 to obtain bounds for the choice probability prediction. For that,

we define

𝑓(𝑎𝑗, 𝑆,𝐷) :=
𝜆̃(𝐷 ⊎ 𝐶(𝑎𝑗, 𝑆))

𝜆(𝐷)
and 𝑓(𝑎𝑗, 𝑆,𝐷) =

𝜆(𝐷 ⊎ 𝐶(𝑎𝑗, 𝑆))
𝜆̃(𝐷)

, (1.4)

where for any DAG 𝐷, we let 𝐷 denote the DAG with the properties described in Proposi-

tion 1.3.3. We can now establish the following:

Corollary 1.3.1. For a given DAG 𝐷, under the Plackett-Luce model, the following tractable

bounds of purchase probabilities apply:

𝑓(𝑎𝑗, 𝑆,𝐷) ≤ 𝑓(𝑎𝑗, 𝑆,𝐷) ≤ 𝑓(𝑎𝑗, 𝑆,𝐷), and

𝑓(𝑎𝑗, 𝑆,𝐷) ≤ 𝑓(𝑎𝑗, 𝑆,𝐷) ≤ 𝑓(𝑎𝑗, 𝑆,𝐷),

where

𝑓(𝑎𝑗, 𝑆,𝐷) =
𝜆̃(𝐷 ⊎ 𝐶(𝑎𝑗, 𝑆))

𝜆̃(𝐷)
=

𝑣Ψ𝐷(𝑎𝑗)∑︀
𝑎ℓ∈ℎ𝐷(𝑆) 𝑣Ψ𝐷(𝑎ℓ)

. (1.5)

This corollary follows immediately from our definitions and the results of Propositions 1.3.1
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and 1.3.2. We are also able to provide a parametric approximation guarantee similar to the one

in Proposition 1.3.3. We define the parameters ℓ and 𝑝 as above, but now for the merged DAG

𝐷 ⊎ 𝐶(𝑎𝑗, 𝑆). That is, ℓ = max𝑎∈𝒩
⃒⃒
Ψ𝐷⊎𝐶(𝑎𝑗 ,𝑆)

⃒⃒
and 𝑝 =

⃒⃒
{𝑎 ∈ 𝒩 : ∃ v-node 𝑏 ∈ Ψ𝐷⊎𝐶(𝑎𝑗 ,𝑆)(𝑎)}

⃒⃒
.

We also define Δ = max𝑎∈𝒩 max𝑏∈Ψ𝐷⊎𝐶(𝑎𝑗,𝑆)∖{𝑎} 𝑣𝑏/𝑣𝑎. We can then establish the following result:

Proposition 1.3.4. Given DAG 𝐷, offer set 𝑆, and product 𝑎𝑗 ∈ ℎ𝐷(𝑆), we have that

0 ≤ log
𝑓(𝑎𝑗, 𝑆,𝐷)

𝑓(𝑎𝑗, 𝑆,𝐷)
≤ 2𝑝 · log(1 + ℓ ·Δ).

Further, if Δ ∈ 𝑜(𝑛−2), where 𝑛 is the number of nodes, then we have that lim𝑛→∞ 𝑓(𝑎𝑗, 𝑆,𝐷) =

𝑓(𝑎𝑗, 𝑆,𝐷).

The tightness of the bound above again follows from the case when 𝑝 = 0. For other cases,

the approximation ratio can be much better than that suggested by the bound above, as demon-

strated on real-world data in Section 4.5 in the Appendix.

1.4 Empirical study

We now test our proposal on the IRI Academic dataset [12], which consists of real-world pur-

chase transactions from grocery and drug stores. We compare the predictive power of our method

against standard benchmarks, such as the latent-class MNL (LC-MNL) and the random param-

eters logit (RPL) models. We show that our method significantly outperforms the benchmarks

on holdout data on standard performance metrics for measuring predictive accuracy. In the next

section, we show how our method can be used to customize product promotions.

1.4.1 Data analysis

We analyze consumer packaged goods (CPG) purchase transaction data for year 2007 over a

chain of grocery stores in two large Behavior Scan markets in USA. For every purchase instance

in the data set, we have the week and the store id of the purchase, the universal product code

(UPC) of the purchased item, the panel ID of the purchasing customer, quantity purchased,

price paid, and an indicator of whether the purchased item is on promotion or not. Overall we
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considered 27 categories (see Table 1.1) of products out of the available 31 categories, skipping

four because of data sparsity.

The data consists of 1.2M records of weekly purchase transactions from 84K customers over

52 weeks.4 The transaction data is split into the training set, consisting of the first 26 weeks

of purchase observations, and the test set, consisting of the last 26 weeks. We considered only

customers with two or more transactions over the training period. After filtering out customers

with less than two observations over the training data within each category, we were left with a

total of 64K customers and 1.1M purchase transactions. To alleviate data sparsity, we aggregated

all the items with the same vendor code (comprising digits 3 through 7 in 13-digit-long UPC

code) into a unique “product”. For each transaction, we know the purchased product, say 𝑎𝑗, but

we do not have explicit knowledge of the offer set. As a result, we approximately constructed the

offer set 𝑆 by taking the union of all the products that were purchased in the same category as

𝑎𝑗, in the same week, and in the same store. The transaction also contains a promotion indicator,

which is set to 1 if product 𝑎𝑗 was on display or price promotion at the time of purchase. Using

this information, we also approximately constructed the set of promoted products consisting of

all the products in 𝑆 that were on promotion at least once during the week.

Using the purchase transactions within training data, we constructed a DAG for each of the

customers according to our model, which we label partial order MNL (PO-MNL) Promotion

model from here onwards. The construction resulted in the set woCyc of customers with pref-

erence graphs without cycles and set Cyc of customers with preference graphs with cycles. For

the customers in Cyc, we decycled their preference graphs using MILP (1.2) formulated in Sec-

tion 1.2.3 to obtain DAGs. We implemented this decycling procedure in Python (version 2.7.2)

using Gurobi (version 7.0) as the optimization engine, and ran it on a 3.0Ghz processor with

16GB of RAM. We set the time limit to 30 seconds. The mean running time was 8 seconds, with

most instances solved to optimality.

On average, we deleted only 3.4% of edges during this process. As shown in Table 1.1, the

preference graphs of 40% of customers had no cycles. Customers with cycles in their preference

graphs generally had more purchases and, hence, denser graphs than customers without cycles,

4The number of unique customers/panelists across the 27 product categories is far less than 84K. But we
analyze categories separately, so we treat each “customer-category” combination as a separate customer.
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for all categories of products. In particular, the DAGs of customers in Cyc, on average, had

61% more edges and 74% larger height (defined as the length of the longest directed path in the

graph after decycling) than the customers in woCyc. On average, each category had 38 vendors

and about 45.5% of vendors were offered in each store and week combination.

Category Individuals PO-MNL Promotion Model

Expanded name Vend AvOS Total ≥2 sales AvTr |woCyc| % Del Dens1 Dens2 H1 H2

Beer 67 43.87 1796 1154 7.11 466 1.10 208.11 319.51 2.35 4.20

Carbonated beverages 46 15.36 4677 4387 17.63 666 3.38 92.45 148.11 2.22 4.43

Cigarettes 13 7.14 452 307 10.39 233 2.95 35.37 47.53 2.45 3.53

Coffee 59 19.80 3101 2255 5.59 1098 1.93 130.37 186.81 2.85 4.66

Cold cereal 39 17.66 4438 3998 10.94 687 3.69 88.41 158.14 2.47 4.81

Deodorant 32 14.55 1345 653 3.47 347 2.63 69.56 98.48 2.67 4.06

Facial tissue 10 4.17 2967 2063 4.96 1148 7.64 22.48 28.36 2.52 3.80

Frozen dinners/Entrees 77 33.14 3707 3288 13.46 942 2.45 179.24 349.34 2.65 5.51

Frozen pizza 38 15.50 3460 2946 7.83 1213 3.38 84.41 132.93 2.62 4.68

Household cleaners 68 31.42 2725 1699 4.14 388 1.58 170.89 269.30 2.94 4.72

Hot dogs 41 16.81 3318 2187 3.82 1190 1.89 89.95 127.86 2.84 4.37

Laundry detergent 18 10.08 3196 2181 4.04 1367 3.62 49.28 69.71 2.60 4.19

Margarine/Butter 16 10.35 3474 2750 5.65 1405 4.38 47.00 71.07 2.85 4.45

Mayonnaise 14 6.86 3761 2386 3.28 1853 3.41 35.10 44.24 2.46 3.59

Milk 33 11.69 4851 4652 14.90 1674 3.12 78.84 118.78 2.88 4.70

Mustard 52 17.07 3728 2515 3.66 895 1.83 107.38 142.27 2.77 4.06

Paper towels 11 6.94 3072 2051 5.20 977 7.20 29.82 42.74 2.79 4.44

Peanut butter 19 7.99 3153 1923 3.89 1232 3.13 43.38 56.88 2.55 3.70

Salt snacks 95 26.79 4727 4446 15.09 629 2.58 179.08 320.94 2.38 5.26

Shampoo 41 18.74 1466 738 3.73 357 1.67 127.54 172.51 2.62 4.16

Soup 90 32.87 4636 4322 12.02 988 1.71 207.27 353.24 2.67 5.07

Spaghetti/Italian sauce 52 17.85 3473 2698 5.46 1363 1.98 120.92 178.83 2.76 4.62

Sugar substitutes 10 5.05 750 308 3.30 258 3.76 28.45 33.74 2.41 3.62

Toilet tissue 11 7.66 3760 2817 5.10 1552 6.86 32.25 47.75 2.71 4.52

Toothbrushes 36 15.86 1115 499 3.06 260 1.96 90.46 124.48 2.70 4.15

Toothpaste 25 12.05 2110 1186 3.58 708 2.01 64.15 86.54 2.46 3.72

Yogurt 26 9.84 3766 3491 19.81 1349 5.41 55.55 86.79 2.57 4.79

Table 1.1: Summary of the data.

1.4.2 Models compared

We fitted our PO-MNL Promotion model to the data described above and compared its predictive

performance against two widely used benchmarks: the LC-MNL and the RPL models. Both these

models belong to the general class of random utility models (RUMs), so that in each purchase

instance, a customer samples product utilities and then chooses the available product with the

highest value.
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LC PO-MNL Promotion model.

First, we fitted a single class PO-MNL Promotion model to the DAGs. Recall that to deal with

promoted products we expanded our product universe to consist of two copies, a promoted one

and a non-promoted one, of each product. Following the notation introduced in Section 1.2.1,

products 𝑎1, 𝑎2, . . . , 𝑎𝑛 are the non-promoted copies and 𝑎𝑛+1, 𝑎𝑛+2, . . . , 𝑎2𝑛 are the promoted

copies. For any 𝑗 ∈ [𝑛], product 𝑎𝑗+𝑛 is the promoted copy corresponding to product 𝑎𝑗. We let

𝜏𝑗 denote the MNL parameter of product 𝑎𝑗, so that 𝑣𝑗 = exp(𝜏𝑗). We parameterize the model

as follows: for any 𝑎𝑗 ∈ 𝒩 ′:

𝜏𝑗 =

⎧⎪⎨⎪⎩𝛽
0
𝑗 , if 1 ≤ 𝑗 ≤ 𝑛

𝛽0
𝑗−𝑛 + 𝛽𝑗−𝑛, if 𝑛+ 1 ≤ 𝑗 ≤ 2𝑛,

where 𝛽0
𝑗 is the utility derived from the non-promoted copy of product 𝑗 ∈ [𝑛], and 𝛽𝑗 is the ad-

ditional utility from the promotion feature. We estimate the parameters by solving the following

approximated regularized likelihood problem:

max
𝛽,𝛽0

𝑚∑︁
𝑖=1

2𝑛∑︁
𝑗=1

[︃
𝜏𝑗 − log

(︃ ∑︁
𝑎ℓ∈Ψ𝐷𝑖

(𝑎𝑗)

exp(𝜏𝑙)

)︃]︃
− 𝛼(

⃦⃦
𝛽0
⃦⃦
1
+ ‖𝛽‖1), (1.6)

where Ψ𝐷𝑖
(𝑎𝑗) is the set of nodes that are reachable from 𝑎𝑗 in DAG 𝐷𝑖 of customer 𝑖. To arrive

at the above approximation, we used the lower bound 𝜆̃ for computing the likelihood of a DAG,

as discussed in Section 1.3. When the value of 𝛼 is fixed, it can be shown that the optimization

problem in (1.6) is globally concave and therefore can be solved efficiently [92]. We tuned the

value of 𝛼 by 5-fold cross-validation. The above likelihood problem is exact only if every DAG 𝐷𝑖

is a forest of directed trees, each with a unique root. Otherwise, as shown in Proposition 1.3.1, it

provides a lower bound. Once we estimated the parameters, we predicted purchase probabilities

on holdout data using the following approximation:

𝑓(𝑎𝑗, 𝑆,𝐷) =

⎧⎪⎨⎪⎩
𝑣Ψ𝐷(𝑎𝑗)∑︀

𝑎ℓ∈ℎ𝐷(𝑆) 𝑣Ψ𝐷(𝑎ℓ)
, if 𝑎𝑗 ∈ ℎ𝐷(𝑆),

0, otherwise.

(1.7)
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In Section 4.5 in the Appendix we provide empirical evidence that this approximation is a good

and easy-to-compute proxy for the exact 𝑓(𝑎𝑗, 𝑆,𝐷).

To account for heterogeneity among the customers, we also fitted a 𝐾 latent class PO-MNL

Promotion model, which assumes that each customer belongs to one of the ℎ ∈ {1, .., 𝐾} latent

classes. A customer from class ℎ samples her DAGs according to the PO-MNL Promotion model

with parameters 𝜏𝑗ℎ, defined as

𝜏𝑗ℎ =

⎧⎪⎨⎪⎩𝛽𝑗ℎ, if 0 ≤ 𝑗 ≤ 𝑛

𝛽0
𝑗−𝑛,ℎ + 𝛽𝑗−𝑛,ℎ, if 𝑛+ 1 ≤ 𝑗 ≤ 2𝑛.

We let the prior probability that a customer belongs to class ℎ by 𝛾ℎ ≥ 0, so that
∑︀𝐾

ℎ=1 𝛾ℎ =

1. Then, similar to the PO-MNL model, we estimate the parameters by solving the following

approximated regularized likelihood problem:

max
𝛽,𝛽0,𝛾

𝑚∑︁
𝑖=1

log

[︃
𝐾∑︁

ℎ=1

𝛾ℎ

2𝑛∏︁
𝑗=1

exp(𝜏𝑗ℎ)∑︀
𝑎ℓ∈Ψ𝐷𝑖

(𝑎𝑗)
exp(𝜏ℓℎ)

]︃
− 𝛼

𝐾∑︁
ℎ=1

(
⃦⃦
𝛽0
ℎ

⃦⃦
1
+ ‖𝛽ℎ‖1),

The above optimization problem is nonconcave for 𝐾 > 1, even with the value of 𝛼 fixed.

Therefore, we use the standard expectation-maximization (EM) based algorithm described in [92]

to obtain a stationary point.5 Specifically, we initialize the EM with a random allocation of

customers to one of the 𝐾 classes, resulting in an initial allocation 𝒟1,𝒟2, . . . ,𝒟𝐾 , which form

a partition of the collection of all the customers. Then we set 𝛾
(0)
ℎ = |𝒟ℎ|/

(︀∑︀𝐾
𝑑=1 |𝒟𝑑|

)︀
. In order

to get a parameter vector 𝜏
(0)
ℎ , we fit a PO-MNL Promotion model, described above, to each

subset of customers. After calibrating the model, we make predictions in the following way. For

each individual 𝑖 with DAG 𝐷𝑖, we estimate the posterior membership probabilities 𝛾𝑖ℎ for each

class ℎ ∈ [1, .., 𝐾]:

𝛾𝑖ℎ =
𝛾ℎ
∏︀2𝑛

𝑗=1

[︁
𝑣𝑗ℎ/

∑︀
𝑎ℓ∈Ψ𝐷𝑖

(𝑎𝑗)
𝑣ℓℎ

]︁
∑︀𝐾

𝑑=1 𝛾𝑑
∏︀2𝑛

𝑗=1

[︁
𝑣𝑗𝑑/

∑︀
𝑎ℓ∈Ψ𝐷𝑖

(𝑎𝑗)
𝑣ℓ𝑑

]︁ ,

5See the details in Appendix A2.1.2 in [52].
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where 𝑣𝑗ℎ = exp(𝜏𝑗ℎ), and then make the prediction:

𝑓(𝑎𝑗, 𝑆,𝐷𝑖) =
𝐾∑︁

ℎ=1

𝛾𝑖ℎ𝑓ℎ(𝑎𝑗, 𝑆,𝐷),

where 𝑓ℎ(𝑎𝑗, 𝑆,𝐷) are the approximated probabilities in the equation (1.7). We estimated the

model for 𝐾 = 1, 2, . . . , 10, and report the best performance measure from these 10 variants, for

every performance metric that we introduce below.

Benchmark models

We compare our models with two benchmark models succinctly described here (see Section 4.4

in the Appendix for details). The first benchmark is the LC-MNL choice model with 𝐾 latent

classes. In this model, each customer belongs to one unobservable class, and customers from

class ℎ ∈ {1, ..., 𝐾} make purchases according to the MNL model associated with that class.

The model is described by the parameters of the MNL characterizing each class and by the

prior probabilities of customers belonging to each of the classes. Once the model parameters are

estimated, we make customer-level predictions by averaging the predictions from 𝐾 single-class

models, weighted by the posterior probability of class-membership. Similarly to the LC PO-MNL

Promotion model, we estimated the model for 𝐾 = 1, 2, . . . , 10, and report the best performance

measure from these 10 variants, for every performance metric that we introduce in the upcoming

subsection.

The second benchmark model, which also captures heterogeneity in customer preferences, is

the RPL model, which assumes that in each purchase instance, a customer samples the 𝛽 param-

eters of the product utilities according to some distribution and then makes the choice according

to a single-class MNL model with parameter vector 𝛽. In comparison with LC-MNL benchmark,

RPL model allows the parameter vectors 𝛽 to take a continuum of values. Particularly, we

assume that parameter vector 𝛽 is sampled according to multivariate normal distribution with

mean 𝜇 and diagonal variance-covariance matrix Σ, i.e., 𝛽 ∼ 𝑁(𝜇,Σ). Calibration of the RPL

choice model is based on the sample average approximation approach, which is computationally

intensive.

In both benchmark models, we account for product promotion status by introducing a
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product-specific parameter in order to capture the additional utility from this feature.

1.4.3 Prediction performance measures

Broadly, we want to predict the product purchased by customer 𝑖 in period time 𝑡+ 1 given the

set of offered as well as promoted items at time 𝑡 + 1. For that, we compare the models based

on a one-step-ahead prediction experiment for every category under two different metrics: 𝜒2

and miss-rate. Recall that in our case, a period corresponds to a week. For each category of

products, we separately fit the benchmark models and the PO-MNL Promotion and LC PO-MNL

Promotion models to the following three subsets of individuals: customers without cycles in their

preference graph, customers with cycles in their preference graph, and the combination of all the

customers. Then, for each category and each subset of customers, we report the comparisons of

the different fitted models.

The “chi-square” score is computed as follows:

𝜒2 score =
1

|𝒩 ||𝑈 |
∑︁

𝑖∈𝑈,𝑎𝑗∈𝒩

(𝑛𝑖𝑗 − 𝑛̂𝑖𝑗)
2

0.5 + 𝑛̂𝑖𝑗

, where 𝑛̂𝑖𝑗 =

𝑇𝑖∑︁
𝑡=1

𝑓𝑖(𝑗𝑖𝑡, 𝑡),

where 𝑈 is the set of all individuals, and 𝑛𝑖𝑗 is the observed number of times individual 𝑖

purchased product 𝑗 during the time horizon of length 𝑇𝑖. The indicator function 𝑓𝑖(𝑗𝑖𝑡, 𝑡) takes

value 1 if the product indexed 𝑗 has the highest choice probability for individual 𝑖 at time 𝑡, and

0 otherwise. This score measures the ability of the model combinations to predict the aggregate

market shares of the products purchased by every individual, where lower scores indicate better

prediction accuracy. The 0.5, added in the denominator, allows to deal with undefined instances.

The miss-rate is computed as follows:

miss rate =
1

|𝑈 |
∑︁
𝑖∈𝑈

1

|𝑇𝑖|

𝑇𝑖∑︁
𝑡=1

I[𝑓𝑖(𝑗𝑖𝑡, 𝑡) = 0],

where I[𝐴] is the indicator function that takes value 1 if 𝐴 is true and 0 otherwise, and 𝑗𝑖𝑡 is the

index of the item purchased at time 𝑡 by individual 𝑖. Miss rate is a more stringent predictive

measure than “chi-square” score, because it rewards or penalizes a method on every individual
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transaction assessment, as opposed to the long-term aggregate prediction of the chi-square score.

Both scores are designed to reflect the types of prediction problems that would be relevant in

practice.

1.4.4 Brand choice prediction results

Figure 1-3 presents scatterplots of the “chi-square” scores of LC-MNL and RPL versus “chi-

square” scores of PO-MNL Promotion (single class) and LC PO-MNL Promotion (multi-class),

across the 27 product categories, for three subsets of customers. We conclude that the PO-MNL

Promotion models outperforms both LC-MNL and RPL benchmarks to a big extent (i.e., most

of the points lie above the 45-degree line). Note that both benchmark models also account for

the promotion status of the products. First, consider the left two panels in Figure 1-3. Here,

we calibrate the models on the subset of individuals who do not have cycles in their preference

graph (i.e., up to Phase 2 in the DAG construction process). The “chi-square” score of PO-

MNL Promotion model exhibits an average improvement of 10.25% over LC-MNL and 4.55%

over RPL. This improvement in prediction performance can be explained by the effectiveness of

the DAGs in capturing partial preferences of the customers. Table 1.3 reports the distribution

of the number of unique brands purchased by customers across the training data. On average

customers purchase no more than 4 unique brands in the training data, indicating that customers

have strong preferences and their purchases do not change very much from week to week. This

brand loyal behavior of customers also explains the significant gains in performance that our

method obtained over the benchmark methods. These improvements are significant, especially

considering the fact that both benchmark models have more parameters to estimate and require

around 300× more time than it takes to estimate the PO-MNL Promotion model. The key

attribute of the PO-MNL Promotion model making it superior to the benchmarks is that it

accounts for heterogeneous customer preferences through their partial orders, so that it makes

more efficient use of the limited purchase transaction data. Using the LC PO-MNL Promotion

model, we can further boost performance, resulting in average improvement of 14.72% over LC-

MNL and 8.98% over RPL.

Second, consider the middle column in Figure 1-3, where we calibrated the models on the

subset of individuals that have cycles in their preference graph. The formation of cycles in the

63



www.manaraa.com

Figure 1-3: Scatter plot of the average 𝜒2 scores.

preference graph is symptomatic of a less consistent choice behavior of the customers in the first

place. In fact, by checking the 𝑦-scale we can observe that the performance of all the models

deteriorate in this case as compared to their performance in the left panels. Yet, we see that

PO-MNL Promotion model exhibits an average improvement of 13.01% over LC-MNL and 3.58%

over RPL, whereas LC PO-MNL Promotion model, capturing heterogeneity of customers to a

greater extent, has an average improvement of 13.96% over LC-MNL and 4.52% over RPL.

Third, consider the right panels in Figure 1-3, where we use the previous separate calibrations

but report the joint prediction over all the individuals for each category of products. The

performance here is a weighted average between the two types of customers: with and without

cycles in the preference graphs, achieving significant improvements overall: PO-MNL Promotion

model exhibits an average improvement of 12.83% over LC-MNL and 3.89% over RPL, while LC

PO-MNL Promotion model shows an average improvement of 14.7% over LC-MNL and 5.75%

over RPL.

Figure 1-4 presents scatterplots of the miss-rates, using a display format similar to that of
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Figure 1-4: Scatter plot of the average miss rate.

Figure 1-3. From it, we observe that our model combinations obtain improvements of between

0.05% and 4.01% under PO-MNL Promotion, and further improvements of between 2.36% and

6.48% under LC PO-MNL Promotion over the benchmarks in all six panels. Even though

these numbers appear to be low, we emphasize here that this metric is a very stringent one

and therefore it is expected that our PO-MNL Promotion models obtain moderate (but still

significant) improvements over state-of-the-art alternatives.

We make the following observations from the results. First, recall that the decycling in

Phase 3 of the DAG construction process allows us to calibrate the PO-MNL Promotion model

also for the subset of individuals that have cycles in their preference graph. As a result, it

further boosts the improvement of PO-based models over the classical benchmarks by increasing

the coverage of individuals to the maximum level of 100%; in other words, we can calibrate

PO-MNL Promotion and make predictions for both subsets of the customers, those with and

without cycles in their preference graph. Second, from all the panels it can be concluded that

the RPL model outperforms the LC MNL model on average across 27 categories of products.
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Third, for all the panels we have that LC PO-MNL model boosts the performance of PO-MNL

model by accounting for additional heterogeneity of customers. Fourth, we observe that PO-

MNL Promotion model (or LC PO-MNL model) outperforms in most of the categories both LC

MNL and RPL benchmarks, which incorporate the same information on promotions. Therefore,

this model can be used to measure customer response to product promotions even when we have

very few observations for each customer by capturing partial preferences of the customers by

DAGs.

In Section 1.5, we perform several robustness checks with respect to some of the assumptions

that we made here, including (i) the way we aggregate data from customers to estimate the

benchmark models, (ii) accounting explicitly for the no-purchase option, and (iii) the way we split

data between training and holdout samples. The key insights remain the same. We also tested

(iv) the impact of not adding the implicit candidate edges in Phase 2 of the DAG construction

process, and noticed a poorer performance of around 1.85% on average with respect to both 𝜒2

and miss rates compared to including them. Finally, in Section 1.5.5 we report comparative

statistics on the predictive performance of the behavioral models studied by [52]. We find that for

categories with high loyalty index, and within them, for customers having non-empty behavioral

DAGs, practitioners may prefer to use the PO-MNL Inertial and Censored models. Other than

these (category, individual) combinations, the use of the PO-MNL Promotion model proposed

in this chapter leads to more accurate predictions. Yet, in this chapter, we apply the PO-MNL

Promotion model to run customized promotions for all categories and individuals because it relies

on a completely data-driven approach to build the DAGs, and these DAG structures with both

promoted and non-promoted nodes serve as basis to design and run the personalized promotions

discussed in the next section.

1.5 Robustness check for the prediction results

In this section we summarize the major empirical experiments conducted in order to check the

robustness of the prediction results reported in Section 1.4.4. We start checking the robustness

with respect to different data aggregation strategies, followed by the effect of accounting for no-

purchase observations, the effect of different cutoff points between training and holdout sample
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data, and the effect of adding implicit candidate edges in Phase 2 of the DAG construction

process.

1.5.1 Robustness with respect to different data aggregation strategies

We start by demonstrating the robustness of the results to changes in how we calibrate the

benchmarks. In particular, in Section 1.4.4, we calibrated all the models separately on (i) cus-

tomers who do not have cycles in their preference graph under the PO-MNL Promotion, and

(ii) customers who have cycles in their preference graph under the PO-MNL Promotion model.

Then we used previous separate calibrations but presented the joint prediction over all the indi-

viduals for each category of products, i.e., the weighted average prediction performance between

both types of customers: with and without cycles in their preference graph. Here we show the

prediction performance of our model versus the benchmarks using a display format similar to

that in Section 1.4.4, but when calibrating both benchmarks on the set of all individuals. Note

that there is a tension about the benchmarks here since one side they are estimated on a larger

volume of data, but at the same time this extra volume comes at the expense of higher customer

heterogeneity (i.e., individuals without and with cycles pool together for the estimation process).

Similarly to Figure 1-3, Figure 1-5 presents scatterplots of the “chi-square” scores of LC-

MNL and RPL versus “chi-square” scores of PO-MNL Promotion (single class) and LC PO-

MNL Promotion (multi-class), across the 27 product categories. Note that in all the panels we

calibrate the benchmarks on the set of all individuals and then separately make predictions for

three subsets of customers: without and with cycles, and the entire population.

First, consider the left two panels in Figure 1-5. Here, we calibrate the PO-MNL Promotion

and make predictions with all the models on the subset of individuals who do not have cycles in

their preference graph. The “chi-square” score of PO-MNL Promotion model exhibits an average

improvement of 9.77% over LC-MNL and 5.79% over RPL. Using the LC PO-MNL Promotion

model, we can further boost performance, resulting in average improvement of 14.31% over LC-

MNL and 10.28% over RPL.

Second, consider the middle column in Figure 1-5, where we calibrate the PO-MNL Promotion

and make predictions with all the models on the subset of individuals that have cycles in their

preference graph. We see that PO-MNL Promotion model exhibits an average improvement
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Figure 1-5: Brand choice 𝜒2 prediction results. In all the panels we estimate the benchmarks on
the set of all individuals.

of 12.4% over LC-MNL and deterioration of 1.05% over RPL, while LC PO-MNL Promotion

model leverages the performance to an average improvement of 13.47% over LC-MNL and 0.2%

over RPL.

Third, consider the right panels in Figure 1-5, where we use the previous separate calibrations

for all the models but report the joint prediction over all the individuals for each category of

products. The performance here is a weighted average between the two types of customers: with

and without cycles in the preference graphs, achieving significant improvements overall: PO-

MNL Promotion model exhibits an average improvement of 14.32% over LC-MNL and 2.68%

over RPL, while LC PO-MNL Promotion model shows an average improvement of 16.24% over

LC-MNL and 4.74% over RPL.

Figure 1-6 presents scatterplots of the miss-rates, using a display format similar to that of

Figure 1-4. From it, we observe that our model combinations obtain improvements of up to

8.92% under PO-MNL Promotion, and further improvements of up to 11.3% under LC PO-MNL
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Figure 1-6: Brand choice miss rate prediction results. In all the panels we estimate the bench-
marks on the set of all individuals.

Promotion over the benchmarks within the six panels.

The key observations can be summarized as follows: (i) the PO-MNL Promotion model,

especially the multiclass version of it, outperforms the state-of-the-art competitive benchmarks

even when the latter ones are allowed to be estimated on a larger population of customers; (ii) the

best results for our model are observed on the individuals without cycles in the first place, who

are the ones displaying the most consistent behavior; and (iii) LC-MNL is more competitive

than RPL with respect to 𝜒2 scores, but is dominated by RPL in terms of miss rates. The last

observation is different from what we report in Section 1.4.4, where RPL dominated LC-MNL

with respect to both 𝜒2 and miss rates. The larger volume of data to train the models seems to

favor more LC-MNL than RPL.
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1.5.2 Robustness with respect to adding no-purchase observations

In order to streamline the comparison of the models in the empirical case study in Section 1.4.4

we did not include the no-purchase observations in the prediction tasks since we did not have

explicit data on the no-purchase alternatives in our dataset. Here, we demonstrate that the

brand choice prediction results remain qualitatively the same when we include the no-purchase

option in our calibration and prediction tasks.

To this end, we approximately build the no-purchase observations from our data. In particu-

lar, we can approximately infer from the data the times the customer visits to the store to make at

least one category purchase. Therefore, we can easily obtain instances when the customer visited

the store but ended up not making a specific category purchase. However, these observations in

the data cannot be considered as the no-purchase instances since we do not know if the customer

had the intent to make a category purchase and ended up choosing the no-purchase option. In

fact, the number of store visits is around ten times higher than the number of purchases for

some categories. As a result, in order to minimize the number of “spurious” no-purchase obser-

vations inferred from the data, we first assume that the number of times a customer chooses the

outside option is comparable to the number of times a customer makes a category purchase. In

particular, we say that the number of no-purchases of every customer is equal to the number of

times a customer buys her second most purchased product. It implies that the customers chose a

no-purchase alternative on average 𝛼𝑇𝑐 times, where 𝑇𝐶 is the total number of times a customer

made a category purchase and 𝛼 = 20.5%. We also show below that the obtained prediction

results are robust to other values of 𝛼. As a result, we randomly sample the fixed portion of the

no-purchase observations from the data on the store visits of the customers when they decided

not to make a category purchase, and include these additional transactions into our dataset for

every category. Then we use the same approach described above to calibrate the models and

test their predictive performance.

Analogously to Figure 1-3, Figure 1-7 presents scatterplots of the “chi-square” scores of LC-

MNL and RPL versus “chi-square” scores of PO-MNL Promotion (single class) and LC PO-MNL

Promotion (multi-class), across the 27 product categories, for three subsets of customers. First,

consider the left two panels. Here, we calibrate the models on the subset of individuals that do
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not have cycles in their preference graph. The “chi-square” score of PO-MNL Promotion model

exhibits a moderate average deterioration of 2.79% over LC-MNL and an average improvement

of 7.43% over RPL. Second, consider the middle column in Figure 1-7, where we calibrated the

models on the subset of individuals that have cycles in their preference graph. We see that PO-

MNL Promotion model exhibits an average improvement of 12.88% over LC-MNL and 4.17%

over RPL.

In the left two panels in Figure 1-7, it is demonstrated that using LC PO-MNL Promotion

model, we can further boost performance of the proposed methodology, resulting in average

improvement of 14.64% over LC-MNL and 22.8% over RPL. Similarly, as illustrated in the middle

column of Figure 1-7, LC PO-MNL Promotion model, capturing heterogeneity of customers to

a greater extent, has an average improvement of 16.07% over LC-MNL and 7.43% over RPL.

Third, consider the right panels in Figure 1-7, where we use the previous separate calibrations

but report the joint prediction over all the individuals for each category of products. The

performance here is a weighted average between the two types of customers: with and without

cycles in the preference graphs, achieving significant improvements overall: PO-MNL Promotion

model exhibits an average improvement of 12.59% over LC-MNL and 3.48% over RPL, while LC

PO-MNL Promotion model shows an average improvement of 16.18% over LC-MNL and 7.27%

over RPL.

Analogously to Figure 1-4, Figure 1-8 presents scatterplots of the miss-rates, using a display

format similar to that of Figure 1-7. From it, we observe that we obtain improvements of between

1.28% and 10.04% under LC PO-MNL Promotion over the benchmarks in all six panels.

Like in the base case in Section 1.4.4 without the no-purchase option, we observe that the

PO-MNL Promotion model continues to outperform both benchmarks in most of the categories,

with respect to 𝜒2 and miss rate, especially for its multiclass version.

Next, we showcase the robustness of the predictive results for other values of 𝛼. In particular,

we test the predictive performance of the LC PO-MNL Promotion model versus the LC-MNL

benchmark for 𝛼 = 30% and 𝛼 = 40% in Figures 1-9 and 1-10, respectively. Here we focus only

on the LC-MNL benchmark provided its competitive performance and the heavy computational

burden of RPL. We observe that the improvements of PO-MNL Promotion over the LC-MNL

benchmark vary with 𝛼 between 12.36% and 14.95% in terms of the 𝜒2 score, and between 1.24%
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Figure 1-7: Brand choice 𝜒2 prediction results with no-purchase option included. We assume
that the number of no-purchases of every customer is equal to the number of times a customer
buys her second most purchased product.

and 1.76% in terms of the miss rate.

Figures 1-9 and 1-10 confirm that the superior performance of PO-MNL Promotion is robust

to different fractions of no-purchases in the dataset.

1.5.3 Robustness with respect to the split between test and training

datasets

In all our experiments so far, the training set consists of the first 26 weeks and the test set consists

of the last 26 weeks of transactions. Here we show the robustness of the results to changes in how

we split the data into the training and test sets. We also include the no-purchase observations

(with 𝛼 = 20.5%).

When we reduce the volume of the training set to the first 21 weeks and enlarge the test set

to the last 31 weeks of transactions, Figure 1-11 shows that the LC PO-MNL Promotion model
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Figure 1-8: Brand choice miss rate prediction results with no-purchase option included. We
assume that the number of no-purchases of every customer is equal to the number of times a
customer buys her second most purchased product.

outperforms the LC-MNL benchmark by 16.14% and 1.02% based on the miss rate and 𝜒2 scores,

respectively.

When increasing the training set to the first 31 weeks and reducing the test set to the last 21

weeks of transactions, Figure 1-12 shows that the LC PO-MNL Promotion model outperforms

the LC-MNL benchmark by 14.66% and 1.12% based on the miss rate and 𝜒2 scores, respectively.

We observe a sustained relative performance of the PO-MNL Promotion model over the LC-MNL

model as we reduce or increase the training dataset.

1.5.4 Robustness with respect to the addition of implicit candidate

edges in the DAGs

Recall that the Phase 2 in the DAG construction process is about the inclusion of implicit

candidate edges in the DAG that identifies each individual. This is a heuristic step that assumes
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Figure 1-9: Brand choice prediction results with no-purchase option included. Every customer
is assumed to choose no-purchase alternative on average 30% of times.

that the relative preference between two products is preserved regardless the promotion status

of the products. That is, if from Phase 1 a full price version of 𝑎𝑗 is preferred over the full price

version of 𝑎𝑘, then the promoted version 𝑎𝑗+𝑛 is also preferred to the promoted version 𝑎𝑘+𝑛.

Similarly, if the Phase 1 preference is stated on the promoted versions, then the relative preference

is extended to the corresponding full price versions. These Phase 2 edges have a low weight and

some of them are the ones to be deleted in Phase 3 in case a cycle arises in the DAG. Of

course, the heuristic could add spurious implicit candidate edges, and the final justification for

the existence of the edges is their empirical performance.

To this end, Figure 1-13 illustrates that the LC PO-MNL Promotion model with implicit can-

didate edges outperforms the LC PO-MNL Promotion without implicit edges by 1.82% and 1.9%

based on miss rate and 𝜒2 scores, respectively. This observation provides enough support for

their inclusion in the DAG. It allows us to conclude that adding implicit edges in the DAG

construction process boosts the benefit in prediction performance because of the denser DAG

which outweighs the biases from adding few spurious edges along the way.
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Figure 1-10: Brand choice prediction results with no-purchase option included. Every customer
is assumed to choose no-purchase alternative on average 40% of times.

1.5.5 Comparison with the DAG-based behavioral models studied by

[52]

In this subsection, we compare the predictive performance of the PO-MNL Promotion model

with the PO-MNL Inertial and PO-MNL Censored models studied by [52]. Note that both PO-

MNL Inertial and PO-MNL Censored models take into account the information about product

promotions implicitly through modeling the consideration sets of customers via behavioral rules.

Relying on the pre-specified behavioral assumptions this approach cannot consistently explain the

purchasing behavior of all the customers. As a result, the DAGs of customers whose purchasing

transactions are inconsistent with these assumptions are assumed to be empty (i.e., without

edges), which reduce the representation of customer preferences to any standard random utility

model such as the MNL or the LC-MNL. In particular, to run the prediction performance of

PO-MNL Inertial and PO-MNL Censored for customers that have empty DAGs, we use the best

of up to 10 LC-MNL [LC-MNL].

Recall that the approach taken in this chapter for the DAG construction is different, since it

is completely data-driven and accounts explicitly for promotion effects. The approach could still

lead to cycles in the preference graph, which are then deleted in Phase 3 such that all customers

are characterized by non-empty DAGs. Figure 1-14 illustrates the scatter plot of the 𝜒2 scores of

all 29 product categories under the LC PO-MNL Promotion vs. PO-MNL Inertial with clustering
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Figure 1-11: Brand choice prediction results with no-purchase option included. The training
data consists of 21 weeks, and the test data consists of 31 weeks.

and PO-MNL Censored with clustering (see [52, Section 5]). In all the panels we calibrate the

LC-MNL and LC PO-MNL Promotion models on the set of all individuals. First, consider the left

two panels in Figure 1-14. Here, we calibrate the PO-MNL Inertial [top left panel] and PO-MNL

Censored [bottom left panel] and represent the prediction performance of all the models over

the subset of individuals that can be explained by behavioral assumptions. The 𝜒2 score of LC

PO-MNL Promotion model exhibits an average deterioration of 15.52% over PO-MNL Inertial

with clustering and 18.68% over PO-MNL Censored with clustering. Second, consider the right

column in Figure 1-14, where we calibrate the PO-MNL Inertial [top right panel] and PO-MNL

Censored [bottom right panel] and represent the prediction performance of all the models over

the subset of individuals that can not be explained by behavioral assumptions. In this case, both

PO-MNL Inertial and PO-MNL Censored models are reduced to the LC-MNL model. We see

that LC PO-MNL Promotion model exhibits an average improvement of 11.18% over PO-MNL

Inertial and 2.14% over PO-MNL Censored.

Figure 1-15 presents scatterplots of the miss rates, using a display format similar to that

of Figure 1-14. The insights are the same as in Figure 1-14. In the left column, we calibrate

the PO-MNL Inertial [top left panel] and PO-MNL Censored [bottom left panel] models and

represent the prediction performance of all the models over the subset of individuals who can

be explained by behavioral assumptions. We observe that LC PO-MNL Promotion obtains an
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Figure 1-12: Brand choice prediction results with no-purchase option included. The training
data consists of 31 weeks, and the test data consists of 21 weeks.

average deterioration of 1.36% over PO-MNL Inertial with clustering and of 3.66% over PO-

MNL Censored with clustering. Then, in the right column in Figure 1-15, we calibrate the PO-

MNL Inertial [top right panel] and PO-MNL Censored [bottom right panel] and represent the

prediction performance of all the models over the subset of individuals that can not be explained

by behavioral assumptions. In this case, both PO-MNL Inertial and PO-MNL Censored models

are reduced to LC-MNL model. We notice that LC PO-MNL Promotion model exhibits an

average improvement of 2.13% over PO-MNL Inertial and 2.53% over PO-MNL Censored.

Even though the results in Figures 1-14 and 1-15 show an average dominance of the behavioral

models over the PO-MNL Promotion optimization model with respect to both 𝜒2 and miss rates,

the presence of points above the diagonal indicates that for some categories PO-MNL Promotion

still dominates. In order to characterize those categories, in Figure 1-16, we report the loyalty

score of each category computed on the training data (left panel).6 Then, in the middle and

right panels we explore possible correlations between the percentage of 𝜒2 improvement of the

behavioral models with respect to PO-MNL Promotion (vertical axis) vs. loyalty score (horizontal

axis). We note a negative correlation for PO-MNL Promotion improvements with respect to both

PO-MNL Inertial and Censored models, meaning that the behavior of customers for most of the

6To compute the loyalty score of a category (c.f. [52, Section 5.4]), we calculate the fraction of the total
purchases coming from the most frequently purchased product (i.e., vendor) of each customer buying from that
category and take the average of those fractions across customers purchasing from the category.
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Figure 1-13: Brand choice prediction results with no-purchase option included. Robustness with
respect to the addition of implicit candidate edges.

categories with low loyalty index (which exhibit the least stickiness in customers’ preferences) are

better explained by the PO-MNL Promotion model, as it is the case for customers represented

by empty DAGs in the Jagabathula and Vulcano’s approach.

These findings suggest that the practitioners might use the PO-MNL Inertial and Censored

models for categories with high loyalty index, and within them, for customers having non-empty

DAGs. Other than this, the use of the PO-MNL Promotion model proposed in this chapter leads

to more effective predictions.

1.6 Optimization of personalized promotions

Having established that our model provides a more faithful representation of customer choice

behavior than existing standard benchmarks, we now turn to the problem of customizing pro-

motions. We take the standpoint of a retailer who wants to decide which products to put on

promotion for each customer visit to maximize the expected revenue. In our study, the offer set

is already decided and the retailer can only change the promotion activity from one customer to

another. As discussed in Section 1.1, this setup reflects the practical situation faced by brick-

and-mortar retailers, who cannot customize the shelf display to each visiting customer, but can

adjust the promotion activity by launching personalized coupons to different customers.
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Figure 1-14: Scatter plot of the 𝜒2 scores. Comparison with the DAG-based behavioral models.

We start by illustrating some basic facts that the retailer can infer about the preferences of

each customer from the structure of the corresponding DAGs. Then, we formulate the retailer’s

decision problem under the PO-MNL Promotion model as an MILP, followed by a test of our

proposed methodology using the DAGs trained as described in Section 1.4 on the IRI Academic

Dataset. For each purchase instance of the customer in the holdout sample, we use the MILP

to determine the optimal promotion set. We then use the PO-MNL Promotion model to predict

the purchase decisions of the customer under the optimal and the existing (i.e., those that are

part of the holdout data) promotion sets in order to assess potential revenue improvements.

1.6.1 Inferences from the DAG structures

Our DAG-based representation of the customers’ preferences has inherent value to a retailer

reasoning about his promotion strategy; namely, the retailer can come to some key conclusions

about the promotion decision purely from the nonparametric structure DAG.

To illustrate this, consider a customer whose preferences are described by DAG 𝐷 in Figure 1-

2 (after Phase 3) facing the full offer set including products 1 through 4, each of them in either

its promoted or non-promoted version. From this DAG alone, the retailer can make the following
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Figure 1-15: Scatter plot of the miss rate scores. Comparison with the DAG-based behavioral
models.

inferences about what his promotion strategy should be for this customer: (a) product 4 will be

purchased only on promotion since it is dominated by both versions of product 2; (b) product 3

will not be purchased whether it is put on promotion or not since it is also dominated by both

versions of product 2; (c) the promotion strategy for product 1 depends on what is done for

product 2 – if product 2 is on promotion, product 1 will not be purchased whether it is on

promotion or not because there is a directed path from promoted 2 to promoted 1 (i.e., node 5

therein), and hence to non-promoted 1; but if product 2 is not promoted, then product 1 could

be purchased if it is put on promotion –note there is no directed path between nodes 2 and 5.

Similar reasoning can be applied in other cases. In this way, our proposed DAG structures

provide a visual, intuitive, and systematic way for retailers to reason about their promotion

strategy on a per customer basis.

1.6.2 Promotion optimization: MILP formulation

We now systematize the intuitive reasoning above through an MILP to formulate the retailer’s

promotion optimization problem. The retailer must solve this problem each time a customer
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Figure 1-16: Loyalty scores and improvements of PO-MNL Promotion over behavioral DAG-
based models.

visits the store. The formal setup is as follows. Recall that the universe 𝒩 ′ consists of 2𝑛

products, where for all 𝑗 ∈ [𝑛], the products 𝑎𝑗 and 𝑎𝑗+𝑛 are the non-promoted and promoted

copies, respectively, of the same product. For each 𝑗 ∈ [𝑛], we let 𝑟𝑗 denote the revenue from the

non-promoted copy 𝑎𝑗 and 𝑑𝑗 the discount offered for the promoted copy 𝑎𝑗+𝑛, for a total revenue

of 𝑟𝑗 − 𝑑𝑗. Also for each 𝑗 ∈ [𝑛], let 𝑞𝑗 and 𝑞𝑗+𝑛 denote the expected purchase quantities when

the customer purchases the non-promoted copy 𝑎𝑗 and the promoted copy 𝑎𝑗+𝑛, respectively. We

assume that the no-purchase option 𝑎0 is always available and 𝑟0 = 𝑑0 = 0. Note that throughout

this chapter so far, the no-purchase option was included implicitly in our analysis because as far

as our methodology is concerned, there is no distinction between the no-purchase option and any

other product (except that there is no promoted version of the no-purchase option). We now

make it explicit because the promotion decision of the retailer not only impacts brand switching

but also affects the purchase propensity of the customer.

The retailer must decide which products to offer on promotion. For any 𝑗 ∈ [𝑛], if the retailer

decides to offer product 𝑎𝑗 on promotion, then we say that the retailer has decided to offer the

promoted copy 𝑎𝑗+𝑛, whereas if the retailer decides not to promote product 𝑎𝑗, then we say that

the retailer has decided to offer the non-promoted copy 𝑎𝑗. As a result, the promotion decision
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of the retailer reduces to an assortment decision. To capture this, we let 𝑆𝒜 ⊆ 𝒩 ′ ∪ {𝑎0}, with

𝑎0 ∈ 𝑆𝒜 denote the subset of available products from which the retailer must select his offer set.

To be consistent with our set up, 𝑆𝒜 has the property that if product 𝑎𝑗 ∈ 𝑆𝒜 for 𝑗 ∈ [𝑛], then

product 𝑎𝑗+𝑛 ∈ 𝑆𝒜. Then, the goal of the retailer is to decide the subset of products in 𝑆𝒜 to

offer to a customer, with the constraint that exactly one of the promoted or non-promoted copies

of each product in 𝑆𝒜 is offered, as discussed in Section 1.2.1.

Our MILP model includes three sets of decision variables: 𝑥,𝑦, and 𝑧. We start from defining

binary variables 𝑦, used to determine which product version (promoted or non-promoted) is

offered within the available set 𝑆𝒜, i.e., (𝑦𝑗 ∈ {0, 1} : 𝑎𝑗 ∈ 𝑆𝒜), where 𝑦𝑗 = 1 means that product

copy 𝑎𝑗 is offered. This can be captured by the constraint:

𝑦𝑗 ∈ {0, 1} and 𝑦𝑗 + 𝑦𝑗+𝑛 = 1 ∀ 𝑎𝑗 ∈ 𝑆𝒜, 𝑗 ∈ [𝑛].

Since the no-purchase alternative is always available, we set 𝑦0 = 1.

The binary variables 𝑥 are used to indicate the product that will be purchased. Let (𝑥𝑗 ∈

{0, 1} : 𝑎𝑗 ∈ 𝑆𝒜), with 𝑥𝑗 = 1 if and only if the customer purchases product 𝑎𝑗. Of course, only

available products could be purchased, and the set of binary variables 𝑦 enforces this connection.

Let 𝑆(𝑦) := {𝑎𝑗 ∈ 𝑆𝒜 : 𝑦𝑗 = 1} denote the specific assortment offered to the customer under the

offer decision 𝑦. Further, let (𝑧𝑗 ∈ {0, 1} : 𝑎𝑗 ∈ 𝑆𝒜) denote auxiliary variables with 𝑧𝑗 = 1 for all

products 𝑎𝑗 in the set ℎ𝐷(𝑆(𝑦)) of heads (i.e., the nodes without parents) in the subgraph of the

transitive closure of 𝐷 restricted to the set 𝑆(𝑦).

Customers only purchase the head products (see Section 1.3.2); therefore, we have that

𝑥𝑗 = 1 only if 𝑧𝑗 = 1. To determine which of the head products the customer purchases,

we use the approximate posterior probabilities 𝑓(𝑎𝑗, 𝑆(𝑦), 𝐷) from (1.7) and assume that the

customer purchases the product with the highest posterior probability. That is, we assume that

the customer purchases the product 𝑎𝑗 ∈ ℎ𝐷(𝑦) such that

𝑣Ψ𝐷(𝑎𝑗)∑︀
𝑎ℓ∈ℎ𝐷(𝑦) 𝑣Ψ𝐷(𝑎ℓ)

≥
𝑣Ψ𝐷(𝑎𝑘)∑︀

𝑎ℓ∈ℎ𝐷(𝑦) 𝑣Ψ𝐷(𝑎ℓ)

∀ 𝑎𝑘 ∈ ℎ𝐷(𝑦) ∖ {𝑎𝑗},

where we define 𝑣𝑗 = exp
(︀
𝛽0
𝑗

)︀
and 𝑣𝑗+𝑛 = exp

(︀
𝛽0
𝑗 + 𝛽𝑗

)︀
for all 𝑗 ∈ [𝑛]. Since the denominators on
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both sides of the inequality are equal, the customer purchases product 𝑎𝑗 only if 𝑣Ψ𝐷(𝑎𝑗) ≥ 𝑣Ψ𝐷(𝑎𝑘)

for all 𝑎𝑘 ∈ ℎ𝐷(𝑆(𝑦)) ∖ {𝑎𝑗}. These constraints can together be expressed as

𝑎𝑗 /∈ argmax
𝑎𝑘∈𝑆𝒜 : 𝑧𝑘=1

𝑣Ψ𝐷(𝑎𝑘) =⇒ 𝑥𝑗 = 0, (1.8)

𝑥𝑗 ≤ 𝑧𝑗 ∀ 𝑎𝑗 ∈ 𝑆𝒜, (1.9)∑︁
𝑗 : 𝑎𝑗∈𝑆𝒜

𝑥𝑗 = 1, 𝑥𝑗 ∈ {0, 1} ∀ 𝑎𝑗 ∈ 𝑆𝒜, (1.10)

where the first inequality ensures that product 𝑎𝑗 will not be purchased if it does not have

the maximum attraction value (i.e., probability of being purchased) and the second inequality

ensures that only heads are purchased. The normalization constraint (1.10) ensures that exactly

one product is purchased.

To relate the head variables 𝑧 to the offer variables 𝑦, let 𝐵 ∈ {0, 1}(2𝑛+1)×(2𝑛+1) denote the

adjacency matrix of the transitive closure of 𝐷, so that 𝐵𝑘𝑗 = 1 if and only if there is a path

from node 𝑎𝑘 to node 𝑎𝑗 in 𝐷, for any 𝑘, 𝑗 ∈ {0, 1, 2, ..., 2𝑛}. Now, product 𝑎𝑗 becomes a head if

and only if it is offered and there is no other product preferred over 𝑎𝑗 that is also offered. We

can express this condition as the following set of linear constraints:

𝑧𝑗 ≤ 𝑦𝑗, ∀ 𝑎𝑗 ∈ 𝑆𝒜, (1.11)

𝑧𝑗 ≤ 1−𝐵𝑘𝑗𝑦𝑘, ∀ 𝑎𝑘, 𝑎𝑗 ∈ 𝑆𝒜, 𝑘 ̸= 𝑗, (1.12)

𝑧𝑗 ≥ 𝑦𝑗 −
∑︁

𝑎𝑘∈𝑆𝒜∖{𝑎𝑗}

𝐵𝑘𝑗𝑦𝑘, ∀ 𝑎𝑗 ∈ 𝑆𝒜, (1.13)

𝑧𝑗, 𝑦𝑗 ∈ {0, 1}, ∀ 𝑎𝑗 ∈ 𝑆𝒜, (1.14)

where the first constraint ensures that only offered products can become heads, the second

constraint ensures that 𝑎𝑗 is not a head if an offered product 𝑎𝑘 ∈ 𝑆𝒜 is preferred over 𝑎𝑗 in DAG

𝐷, and the third constraint ensures that 𝑎𝑗 becomes a head if it is offered and there is no other

offered product 𝑎𝑘 ∈ 𝑆𝒜 that is preferred over 𝑎𝑗 in 𝐷.

Finally, it remains to express the objective function of the retailer in terms of the decision

variables. The objective of the retailer is to maximize the expected revenue
∑︀

𝑗 : 𝑎𝑗∈𝑆𝒜
𝑅𝑗𝑞𝑗𝑥𝑗

from the customer, where 𝑅𝑗 = 𝑟𝑗 and 𝑅𝑗+𝑛 = 𝑟𝑗 − 𝑑𝑗 for any 𝑗 ∈ [𝑛], and 𝑅0 = 0.
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Combining the above, we can express the retailer’s optimization problem as follows:

max
𝑥,𝑧,𝑦

∑︁
𝑗 : 𝑎𝑗∈𝑆𝒜

𝑅𝑗𝑞𝑗𝑥𝑗

subject to 𝑥, 𝑧 satisfy (1.8)− (1.10),

𝑧,𝑦 satisfy (1.11)− (1.14),

𝑦𝑗 + 𝑦𝑗+𝑛 = 1 ∀ 𝑎𝑗 ∈ 𝑆𝒜, 𝑗 ∈ [𝑛],

𝑦0 = 1.

To convert the above optimization problem into an MILP, we need to formulate constraint (1.8)

as a linear constraint. For that, we introduce continuous variables {0 ≤ 𝑝𝑗 ≤ 1: 𝑎𝑗 ∈ 𝑆𝒜} such

that 𝑝𝑗s are the attraction values of the head products, but normalized to sum to less than 1.

Also, 𝑝𝑗 = 0 for a non-head product. Given such 𝑝’s, constraint (1.8) can be expressed as

𝑥𝑗 ≤ 1 + 𝑝𝑗 − 𝑝𝑘, ∀ 𝑎𝑘, 𝑎𝑗 ∈ 𝑆𝒜, 𝑘 ̸= 𝑗, (1.15)

where it is clear that 𝑥𝑗 = 0 whenever 𝑝𝑗 < 𝑝𝑘 for some 𝑎𝑘 ∈ 𝑆𝒜. We show in Lemma 4.6.1

(see Section 4.6 in the Appendix) that the following set of constraints ensure that 𝑝’s are the

normalized attraction values:

𝑝𝑗 ≤ 𝑧𝑗 ∀ 𝑎𝑗 ∈ 𝑆𝒜, (1.16)

𝑝0 +
∑︁

𝑗 : 𝑎𝑗∈𝑆𝒜

𝑝𝑗 = 1, (1.17)

0 ≤ 𝑝𝑗 ≤ 𝑣Ψ𝐷(𝑎𝑗)𝑝0, ∀ 𝑎𝑗 ∈ 𝑆𝒜 (1.18)

𝑝0 + 𝑧𝑗 − 1 ≤ 𝑝𝑗/𝑣Ψ𝐷(𝑎𝑗) ∀ 𝑎𝑗 ∈ 𝑆𝒜. (1.19)
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Putting everything together, we obtain the following MILP:

max
𝑥,𝑧,𝑦,𝑝

∑︁
𝑗 : 𝑎𝑗∈𝑆𝒜

𝑅𝑗𝑞𝑗𝑥𝑗 (1.20)

subject to 𝑥, 𝑧 satisfy (1.9)− (1.10),

𝑧,𝑦 satisfy (1.11)− (1.14),

𝑥,𝑝, 𝑧 satisfy (1.15)− (1.19),

𝑦𝑗 + 𝑦𝑗+𝑛 = 1 ∀ 𝑎𝑗 ∈ 𝑆𝒜, 𝑗 ∈ [𝑛],

𝑦0 = 1.

Conceptually, the formulation is determining, through its variables 𝑦, which ones of the 𝑂(2𝑛)

subsets of products should be put on promotion. Variables 𝑧 determine the set of heads of the

intersection between the customer DAG and the offer set that are candidates to be purchased,

variables 𝑝 are normalized attraction values for those heads, and variables 𝑥 indicate the prod-

uct to be purchased (by identifying the one with highest purchasing likelihood). The size of

MILP (1.20) scales linearly in the number of variables and quadratically in the number of con-

straints with respect to the number of products 𝑛. In our experience, the implementation of the

promotion optimization ran very fast, taking just 0.17 seconds on average and always solving to

optimality.

1.6.3 Customized promotions: performance evaluation

We now evaluate the performance of the MILP proposed above to personalize promotions. We

carry out our analysis using the DAGs that were trained as described in Section 1.4, but with the

no-purchase option added. As noted above, the data do not consist of no-purchase observations.

Therefore, as described in Section 1.5, we combine the purchases of a panelist across all categories

to approximately infer customer visits to the store and then use a simple heuristic to infer which

of these visits ended with no-purchase. Our robustness checks (also reported in Section 1.5) show

that our results are persistent to this specific heuristic.

Because of our aggregation, each product was purchased at different prices in the training

data. Therefore, to arrive at the price 𝑟𝑗 for each product 𝑎𝑗, and the discounted price 𝑟𝑗 − 𝑑𝑗
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its promotion counterpart 𝑎𝑗+𝑛, we averaged the full price and the discounted price, respectively,

across different customers and stores in the training data. Similarly, to find the expected full

price purchase quantity 𝑞𝑗 and the discounted price purchase quantity 𝑞𝑗+𝑛 for each product, we

averaged the full price purchase quantity and discount price purchase quantity, respectively, in

the training data.

In order to assess the potential gains from our promotion strategy, we need a way to de-

termine the purchases of the customers under different promotion strategies. We demonstrated

in Section 1.4 that our DAG model provides the best accuracy for predicting individual cus-

tomer purchases, when compared to existing benchmarks. Therefore, the DAG-based model is a

promising candidate to anticipate purchases. As an extra check, we also first verified its accuracy

in predicting revenues from each customer. To this end, for each customer and each hold-out

time period, we compared the revenue from the purchase predicted by the PO-MNL Promo-

tion model to the revenue from the actual purchase. The left panel in Figure 1-17 illustrates

a scatterplot of the ‘predicted revenue’ vs. the realized revenue from actual purchases, where

by ‘predicted revenue’ we mean the predicted revenue when customers choose according to the

PO-MNL Promotion model for a given set of promoted and non-promoted items. Each point

on the plot represents the revenues from one of the 27 product categories, averaged over all the

customers and all the hold-out time periods. We found that the absolute revenue prediction

errors are relatively small across all 27 product categories with a mean absolute error (MAE) of

only 6.34%. This observation builds confidence on the predictive power of our model in terms of

revenue assessment on top of the already verified purchase instance predictive power.

The revenue gains from customizing promotions are depicted in the middle panel in Figure 1-

17. First, we consider the impact of the personalized promotions while ignoring the existing

mass in-store promotions already offered in the store. Therefore, the retailer can set any subset

of available products on promotion for each customer. We find that the retailer can increase the

overall revenue by an estimated 23.93% on average across the 27 categories, when compared to

the existing promotion strategy.

From the crosses depicted in the middle panel, we notice that the revenue gains from personal-

izing promotions vary significantly from category to category. To better explain this variation, we

regressed the percentage improvement in revenue from personalization for each category against
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Figure 1-17: Revenue performance.

the average purchase frequency for items in the category. We measure the purchase frequency as

the average number of times a customer makes a category purchase. The right panel of Figure 1-

17 illustrates the regression. We see a clear negative correlation between the percentage revenue

improvement and purchase frequency, suggesting the personalization could have the biggest im-

pact for less frequently bought categories of products. Section 1.6.4 provides further analysis on

the factors that explain the variation in the gains from personalization at the individual cus-

tomer level. The main takeaway is that personalization is more beneficial for customers who are

sensitive to promotions and who purchase frequently and is less beneficial to customers who are

brand loyal; see the Section 1.6.4 for precise definitions of these terms.

In reality, personalized promotions need to coexist with the mass promotions already in place

in the store (as reported in the dataset). To capture this, we impose the additional constraint

that a retailer can personalize the promotions of only those products that are not already on

mass promotions. The middle panel of Figure 1-17 illustrates with small circles that if the

personalized promotions are mounted on top of existing in-store mass promotions the retailer

can still increase the overall revenues by an estimated 16.61%, on average, across the 27 categories,

when compared to the existing promotion strategy. Thus, under PO-MNL Promotion model,

personalization boosts the flexibility of the promotion implementation, providing extra flexibility

and enhancing the strategic promotion space.

Sometimes, a particular brand will impose a constraint to the retailer about not being pro-

moted jointly with a competitive brand. In what follows, we empirically study the case where at

most one item could be put on promotion at the personalized level. This could be implemented
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Figure 1-18: Revenue performance of promoting a single item.

by taking the MILP (1.20) and adding the constraint:
∑︀2𝑛

𝑗=𝑛+1 𝑦𝑗 ≤ 1. However, since this con-

straint reduces the search space from 𝑂(2𝑛) to 𝑂(𝑛), it could be executed via a simple search

algorithm that effectively sets 𝑦𝑗+𝑛 = 1 and 𝑦𝑘+𝑛 = 0 for all 𝑘 ∈ [𝑛] ∖ {𝑗}, for each 𝑗 ∈ [𝑛], and

finally retains the value assignment that leads to the highest objective function. Analogous to

our previous analysis, Figure 1-18 illustrates this limited promotion situation under two cases: no

mass promotions simultaneously present (left panel), and the case where personalized promotions

are run on top of the mass ones (right panel). If we promote at most one item for every customer

arriving to the store, in the absence of mass promotions (left panel), the retailer can increase the

overall revenues by an estimated 23.88% on average across the 27 categories, when compared to

the existing promotion strategy. The right panel illustrates that if the personalized single-item

promotions are mounted on top of the existing in-store mass promotions, then the retailer can

increase the overall revenues by an estimated 16.42% on average across the 27 categories, when

compared to the existing promotion strategy. These results indicate that by promoting just

one item for every customer arriving to the store the retailer can get close to all the additional

revenue extractable through personalization; see Section 1.6.5 for a partial explanation of why

a small number of promotions is sufficient to extract most of the benefit from personalization.

Consequently, the strategy of customized promotions where we promote at most one item for

every customer visit, might help the retailer to mitigate the negative effects of running mass

promotions and still lead to near optimal revenues.
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1.6.4 Managerial insights: factors affecting improvements from per-

sonalization of promotions

The revenue improvements from personalization vary across different the customers in each cat-

egory. To explain this variation, for each category, we consider three different customer-level

characteristics:

1. Brand loyalty, measured as the percentage of times a customer buys her most frequently

purchased brand from the category;

2. Purchase frequency, measured as the number of purchases a customer makes from the

category; and

3. Promotion sensitivity, measured as the percentage of times a customer buys a promoted

product from the category.

We regressed the revenue improvement for each customer and category combination against

the brand loyalty, purchase frequency, and promotion sensitivity variables. Table 1.2 reports the

results from fitting four different models:

RevImpr𝑖,𝑐 = 𝛽01 · Cat𝑐 + 𝛽11 · Bloyalty𝑖,𝑐 + 𝜀𝑖,𝑐 (Model 1)

RevImpr𝑖,𝑐 = 𝛽02 · Cat𝑐 + 𝛽22 · PurFreq𝑖,𝑐 + 𝜀𝑖,𝑐 (Model 2)

RevImpr𝑖,𝑐 = 𝛽03 · Cat𝑐 + 𝛽33 · PromSens𝑖,𝑐 + 𝜀𝑖,𝑐 (Model 3)

RevImpr𝑖,𝑐 = 𝛽04 · Cat𝑐 + 𝛽14 · Bloyalty𝑖,𝑐 + 𝛽24 · PurFreq + 𝛽34 · PromSens𝑖,𝑐 + 𝜀𝑖,𝑐 (Model 4),

where the variables Bloyalty𝑖,𝑐, PurFreq𝑖,𝑐, and PromSens𝑖,𝑐 respectively denote the brand loyalty,

purchase frequency, and promotion sensitivity computed for customer 𝑖 under category 𝑐. The

brand loyalty and purchase frequency variables were computed using the training data. To ensure

exogeneity, the promotion sensitivity variable was computed using the data from the previous

year (2006). The variable Cat𝑐 is an indicator variable denoting category 𝑐 to capture category

fixed effects. Finally, RevImpr𝑖,𝑐 is the average revenue improvement from personalization for

customer 𝑖 under category 𝑐, computed over the holdout sample.
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The results from the regressions are consistent and intuitive. The benefits from personaliza-

tion are negatively correlated with brand loyalty (Model 1) and purchase frequency (Model 2)

but positively correlated with promotion sensitivity (Model 3). In other words, customers who

purchase infrequently and concentrate their purchases only on a few brands are harder to pur-

suade to switch to more profitable brands through personalized promotions. On the other hand,

customers who frequently purchase promoted items are easier to be influenced by personalizing

promotions. These findings are consistent in a multiple regression of the revenue improvement

against all three variables (Model 4). The coefficients in the multiple regression are all statisti-

cally significant, indicating that all three factors together influence the brand switching behavior

of customers in response to promotions.

Dependent variable:

Revenue Improvement (%)
Model 1 Model 2 Model 3 Model 4

Brand loyalty -14.415*** -20.514***

(-2.742) (-3.521)
Purch. frequency -1.108*** -1.218***

(-3.133) (-3.224)
Prom. sensitivity 14.575*** 13.891***

(3.666) (3.610)

Category FE Yes Yes Yes Yes
No. Observations: 57,059 57,059 57,059 57,059
R-squared: 0.001 0.003 0.001 0.006

t statistics in parentheses
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01

Table 1.2: Individual-level regressions with product category fixed effects.

1.6.5 Additional insights on brand loyalty and the number of pro-

moted items

In this section, we provide additional descriptive statistics to gain insights into the extent of

brand loyalty of the customers and the number of promoted items in our dataset. Table 1.3

presents these statistics.
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The columns second to the sixth in the table report the statistics describing the distribution

of the number of unique brands purchased by the customers in each category; specifically, the

columns report the mean, the standard deviation, and the first, second, and the third quartiles

of the distribution, respectively. We note that on average customers purchase no more than 4

unique brands in the training data, inidicating that customers have strong preferences and their

purchases don’t change very much from week to week. This brand loyal behavior of customers

also explains the significant gains in performance that our method obtained over the benchmark

methods.

Columns seven and eight report the average number of products our method offers on promo-

tion across all the transactions in the holdout sample. Column seven reports this number when

existing mass promotions are ignored and column eight reports the number of promoted products

on top of the products that are already on mass promotion. We note that most of these numbers

are less than 1, indicating that at optimality, our method offers only a small number of products

on promotion. This observation explains why our method is able to extract most of the revenues

even with the constraint of offering at most one product on promotion; see Section 1.6.3.

In order to provide a partial explanation for the small number of products that are put on

promotion, the last two columns of the table report the average offer set size and the average

number of products that can be potentially promoted (NonDom) across all the transactions.

To calculate the number of products that can be potentially promoted, consider a transaction

in which the offer set is 𝑆 and the customer has DAG 𝐷. We note that product 𝑎𝑗 will not

be promoted if there is another product 𝑎𝑖 ∈ 𝑆 such that the non-promoted copy of 𝑎𝑖 (and

consequently, the promoted copy of 𝑎𝑖) is preferred over the promoted copy of 𝑎𝑗 in DAG 𝐷.

The reason is that product 𝑎𝑗 will not be purchased whether promoted or not because either

the promoted or the non-promoted copy of 𝑎𝑖 will be offered to the customer. We call such a

product 𝑎𝑗 a dominated product and any product that is not dominated, the non-dominated

prodcut. Given this, NonDom reports the average number of non-dominated products across all

the transactions in the holdout sample.

We observe from the table that customer DAGs are such that the average number of non-

dominated products is far smaller than the average offer set size. Because the number of non-

dominated products is an upper bound on the number of products that will promoted, this table
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provides a partial explanation as to why at optimality, only a small number of products are

promoted.

Category
# Unique brands purchased # prom. items

AvOS NonDom
mean stdev 1st q. 2nd q. 3rd q. w./o. mass w. mass

beer 2.09 1.29 1 2 3 1.11 0.26 43.87 23.72

carbbev 2.91 1.31 2 3 4 0.76 0.14 15.36 4.36

cigets 1.29 0.52 1 1 2 0.78 0.68 7.14 5.11

coffee 2.17 1.19 1 2 3 0.61 0.28 19.80 6.72

coldcer 3.03 1.37 2 3 4 0.76 0.16 17.66 5.02

deod 2.03 1.04 1 2 2 0.88 0.29 14.55 9.86

factiss 1.90 0.87 1 2 2 0.71 0.49 4.17 2.53

fzdinent 3.36 2.10 2 3 4 0.63 0.32 33.14 7.97

fzpizza 2.52 1.33 2 2 3 0.62 0.15 15.50 5.55

hhclean 2.90 1.40 2 3 4 0.88 0.61 31.42 11.01

hotdog 2.09 1.04 1 2 3 0.54 0.39 16.81 7.71

laundet 1.96 1.07 1 2 2 0.66 0.26 10.08 4.89

margbutr 1.93 1.02 1 2 2 0.62 0.41 10.35 3.61

mayo 1.36 0.55 1 1 2 0.24 0.20 6.86 4.53

milk 2.36 1.17 1 2 3 0.36 0.23 11.69 2.84

mustketc 2.29 0.92 2 2 3 0.59 0.33 17.07 7.79

paptowl 2.15 1.08 1 2 3 0.94 0.49 6.94 2.62

peanbutr 1.65 0.75 1 2 2 0.28 0.23 7.99 4.39

saltsnck 3.67 1.89 2 3 5 0.77 0.18 26.79 6.87

shamp 2.15 1.14 1 2 3 0.93 0.29 18.74 8.33

soup 2.94 1.46 2 3 4 0.92 0.24 32.87 15.99

spagsauc 2.19 1.25 1 2 3 0.77 0.39 17.85 7.12

sugarsub 1.23 0.47 1 1 1 0.91 0.70 5.05 3.60

toitisu 2.01 1.06 1 2 3 0.99 0.49 7.66 2.98

toothbr 2.06 1.00 1 2 3 0.80 0.44 15.86 7.84

toothpa 1.65 0.74 1 2 2 0.95 0.23 12.05 7.80

yogurt 2.41 1.30 1 2 3 0.46 0.18 9.84 3.67

Table 1.3: Relevant summary statistics from the data.

1.6.6 Robustness check for the promotion optimization

In the revenue results in Section 1.6, we assumed that, when arriving at the store, every customer

would buy the product with highest probability of being purchased under PO-MNL Promotion

model. An alternative objective would be to compute expected revenues accounting for the

probabilities of purchase for every single product on offer. Figure 1-19 illustrates the results

of running personalized promotions under the modified objective function of the optimization
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Figure 1-19: Promotion optimization problem when we optimize the expected revenue for every
purchasing transaction.

problem. Since the new promotion optimization results, illustrated in Figure 1-19, almost exactly

resemble the ones in Figure 1-17, we conclude that all the insights remain qualitatively the same

under the updated formulation of the promotion optimization problem.

1.7 Conclusions and future work

Sales promotions planning is an important part of day-to-day operations in the retail industry,

where a large proportion of products is sold under discounted prices. For many years, grocery

retailers have run massive promotions, offering the same deal to all the customers. This ap-

proach is appealing due to its simple practical implementation, however it may lead to a neutral

or a negative impact on revenue in the long run. Because different customers are affected by

promotions differently, the retailer benefits from offering personalized deals. Nowadays, this is

more feasible given the unprecedented volume of panel data regarding sales transactions that

businesses are able to collect. New technology also assists in personalizing the customer experi-

ence. As a result, customization can mitigate the negative effects of promotions and be used as

an appealing means for price discrimination.

In this chapter, we considered a back-to-back methodology of running personalized promo-

tions with the objective of increasing retailers’ revenue by inducing the brand switching effect.

Naturally, an important step in personalized promotion planning is to understand individual

preferences for different products within a category. The building blocks of our proposal identify
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each customer with a nonparametric DAG that explicitly accounts for promotions by creating two

copies for every item in the product category: promoted and non-promoted versions. Edges in

the DAG of an individual reflect the relative preference between two products or, more precisely,

between the two versions of each product. We described how to build each customer’s DAG

for a given category in a purely data-driven way, and explained how to calibrate a parametric

(multiclass) MNL model over the collection of customer DAGs. We demonstrated its ability to

make more precise and finely grained predictions of customers’ responses to price promotions

on real retail data compared to state-of-the-art benchmarks. Theoretically, we derived tractable

lower and upper bounds relative to the exact likelihood of partial orders and to the likelihood of

purchasing a particular product from a given offer set.

The successful performance of these purchasing prediction results served as the basis for the

next phase: the implementation of customized promotions. We formulated a compact MILP to

solve the personalized promotion optimization problem. On the same dataset, we verified via

simulation studies that our personalized promotions provide revenue gains across 27 categories of

the order of 16% if run on top of the current mass promotions already in place and of the order

of 23% if instead any subset of available products can be promoted. Similar revenue gains were

observed even after constraining the retailer to promote, at most, a single item. Overall, based

on the results obtained from the real retail data, we believe that our methodology constitutes an

interesting framework to be further tested in the retail operations practice.

An industry implementation of our proposal would need to fine-tune a few details. For

instance, there are two MILPs that need to be solved: the decycling and the promotion op-

timization. The decycling procedure is run periodically for each customer (e.g., once every six

months) and could be solved as an overnight batch process. However, the promotion optimization

must be solved in real time during each store visit since it depends on both the particular DAG

of the customer as well as the subset of offered products. Even though, in our experience, the

problem is solved to optimality within a fraction of a second for up to 100 products, as the size

of the product category scales, the computational performance could suffer. As such, developing

valid inequalities and designing a branch-and-cut procedure, or testing polynomial running time

heuristics, could be fundamental for real applications.
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Part II

Demand Models with Consideration

Sets
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Chapter 2

Inferring Consideration Sets from Sales

Transaction Data

2.1 Introduction

Modeling consumer preferences is a fundamental task in many operations applications. It pro-

vides the necessary inputs for optimizing assortments and prices in retail settings as well as when

matching demand and supply on online platforms. Over the past several years, discrete choice

models have become the predominant method to modeling customer demand. At the core, these

models are designed to predict the choice a customer makes in response to an offered set of

products. These models are generally calibrated using sales transaction data, which consists of

a collection of observations of the form (𝑎, 𝑆), where 𝑎 is the chosen product from offer set 𝑆.

The estimation of a choice model from the transaction data faces a major common challenge:

the actual consideration set, or the choice set of the customer, is unobserved. The offer set

consists of the set of items a customer could possibly purchase, but the consideration set is the

set of items that the customer actually evaluates before purchasing. Knowing the consideration

set is critical for calibrating choice models. At its core, calibration relies on the inference that

the customer prefers the chosen product to all other products the she considered. When the

consideration set is unknown, we may make erroneous inferences, which result in biased model

estimates. For instance, we may infer that a product that was not chosen is preferred less than

the chosen one when, in fact, the customer never even considered that product. This issue has
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been recognized in existing literature. Methods have been proposed to infer consideration sets

when the sales transaction data is complemented by tagging individual transactions through

customer IDs [49, 52] and by running surveys [88].

In the absence of any fine-grained data to complement sales transaction data, the common

assumption within operations has been to assume that customers consider everything on offer.

However, in many emerging applications, the definition of the offer set is, itself, quite unclear.

Choice models are increasingly being applied to model demand on online platforms [62]. Think,

for instance, of an online platform for peer-to-peer car sharing, and consider a renter about to

make a booking request. Which cars should be considered as being “offered” by the platform

at the moment of booking? Does the offer set comprise of all the available cars in a radius

of 0.2 miles from her location? Or are all of the available cars parked in a garage in a radius

of 0.1 miles? Or maybe only cars of a particular make parked on the street nearby? The precise

mechanism by which the renter makes a choice is opaque to the platform,1 which only observes

car availability at the moment of the booking and the realized transaction.

In addition, the availability of the products is not always perfectly known. Both on the

online platform as well as in retail settings, we only have access to the sales transaction data.

From this data, offer sets are commonly constructed by assuming that a product is available at a

particular time if it appeared in a transaction close to this time; the offer set is formed by taking

a combination of all available products at that time [96]. Such an assumption is reasonable for

frequently purchased products. However, it generally results in a noisy estimate of the true offer

set.

Finally, even in cases when the availability information is known, the consideration set still

remains unclear. Think of a customer facing a category of products in a grocery store. We

could argue that the offer set is the collection of all SKUs available on the shelf, which has been

the default assumption in retail applications of operations management (OM)-related literature

(e.g., [75, 80]). This approach is justified from classical parametric discrete choice models of the

random utility maximization (RUM) class [5, 59, 64, 92], in which a customer, assumed to be fully

rational, evaluates all feasible product options before making a final decision. The immediate

1Browsing data, if available, may provide greater insight, but it is still imprecise because clicks and appearance
in search results are not perfect signals of consideration.
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criticism of this assumption is that customers are boundedly rational, and the associated cognitive

burden prevents them from evaluating all offered products. Therefore, they consider only a subset

of offered products.

To address these challenges, we model customer choices through a consider-then-choose

model. Under this framework, during the first stage customers form a consideration set by

eliminating a few products, and then choose from the remaining options. Products that are

ruled out during the first step are clearly not going to be purchased. The customer then evalu-

ates products from the consideration set before making a final choice. In cases when the customer

is fully rational and there is noise in the offer set, the consideration set may be viewed as the true

(latent) offer set. In cases when the customer is boundedly rational, the consideration set may

be viewed as a subset that is formed using simple screening rules to limit the cognitive burden

of evaluating all offered products. We assume that the first stage is described by a distribution

over consideration sets, and the second stage is described by a choice rule. In order to be able

to identify our model from sales transaction data, we make a simplifying assumption about the

choice rules. Following recent approaches in the literature, we assume that the choice rule is fully

specified by a unique ranking over the products in the product category [3, 68, 70]. As a result,

the heterogeneity of customers and stochasticity of choice is captured in the model through the

consideration set formation of individuals.

The consideration sets, we estimate, also address a related challenge of identifying a firm’s

competitors, which provides necessary input for the firm’s business strategy development, mar-

keting decisions (e.g., advertising, positioning, segmentation strategy, and promotions), pricing

strategy, and service operations (e.g., distribution strategy) of every firm. Our methodology

allows firms to determine competition based on demand side considerations. Specifically, if two

brands appear in the consideration set of the same customer, then the firms owning those brands

will be competing with each other. While every other firm is a potential competitor, the firm

can prioritize its competitors by analyzing which are most likely to appear alongside their own

firm in customers’ consideration sets.

In summary, understanding the set of products considered by customers at the moment of

making a choice in a systematic way (e.g., considering either the availabilities for services declared

on an online platform, the assortment provided by a retailer, or competitors’ offers), may provide
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an advantage, which ultimately affects the bottom line. This chapter contributes to the existing

literature along these lines. In order to provide a consistent presentation in our work, we focus

on the consideration set version of the problem.

2.1.1 Summary of the results and contribution

The main contribution of this chapter is a methodology designed to estimate consideration sets

of customers from sales transaction data. Our methodology relies on fitting a general consider-

then-choose model to the data. Specifically, we make the following contributions:

∙ A general consider-then-choose model. We propose the general consider-then-choose (GCC)

choice model to infer consideration sets from sales transactions data. We assume that

all customers have the same preference order for items in the product universe, and the

stochasticity of choice comes from the bounded rationality of customers who make every

purchase in a two-stage process. First, they sample their consideration set, which is any

subset of the product universe. Secondly, they purchase the most preferred item in the

sampled consideration set.

∙ Identification conditions for the GCC model. The primary question we address is whether

the GCC model is identifiable from purchasing transaction data. We provide necessary and

sufficient conditions that can be used to discover whether or not sales data was generated

by the model, and provide arguments about how to infer the preference order and the

probability distribution function over consideration sets from observed choice frequencies.

∙ Methodology to estimate the parameters of the GCC model. We start with the MINLP for-

mulation of the MLE problem to infer model parameters from sales transaction data of the

restricted version of the GCC model where customers include items in the consideration

set independently. We show that, in this case, the MINLP can be solved by solving a se-

quence of MILPs by iteratively linearizing the optimizing problem. It follows from existing

results that this procedure converges to the global maximum. The procedure also provides

a bound on the optimality gap at every step. Then, we propose the EM-based algorithm

in order to calibrate the GCC model.
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2.1.2 Related literature

The consideration set literature originates in the marketing and psychology field and dates back

to the papers by [14], [47] and [102]. It has long been recognized that consumers usually make

choices in a two-stage process [65, 82, 89]. First, they identify a small subset of products for

further evaluation, the so-called consideration set, and then purchase the most preferred product

from this subset. It is very hard to observe whether a product is included or not in a consumer’s

consideration set, and it might depend on a number of factors not necessarily related to the

consumer’s preferences. Nevertheless, there is ample empirical evidence in the literature of the

consider-then-choose behavior of customers. In his seminal paper, [40] shows that a model based

on consideration set phenomenon accounts for as much as 78% of the explainable uncertainty in

purchase transaction data. [41] reports that the average size of the consideration set of consumer

packaged goods in US is 1/10th of the total number of brands in the product category. In a

previous study, customers consider on average only 3 brands of deodorants, 4 brands of shampoos,

4 brands of laundry detergents, and 4 brands of coffee [43].

The notion of consideration sets might arise from the limited information gathering ability of

consumers, because they incur a search cost to learn a detailed information about the products

[13, 79]. The search cost might be both cognitive and explicit, when a customer reads reviews

about the product and tries to find the available information in the Internet. In this stream

of literature it is assumed that consumers keep searching for products until the expected gain

from search is less than the searching cost. In particular, [81] calibrated and tested a choice

model of brand set composition that incorporated the search cost for consideration set formation

and obtained significant improvement in predictive performance. Another stream of literature

assumes that customers apply simple screening rules to alleviate the cognitive burden of over-

whelmingly large variety of products [35, 42, 94], instead of sequentially adding products to the

consideration set based on benefit-vs.-cost trade-off. As a result, the product evaluation process

within the consideration set is assumed to be much more exhaustive than the heuristic screening

to find which products will be included in the consideration set. [41] reports consideration set

heuristics that are the most popular in marketing and psychology literature while being of great

importance for managerial decisions in advertising, product development, and strategic planning
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(e.g., conjunctive, disjunctive, compensatory, elimination by aspects) [45, 73, 93]. In particular,

customers might only consider the products that they can afford based on their budget con-

straints [51], or consider only the products under promotion and the ones purchased previously

[52].

The paper by [68] is similar to our work in terms of some modeling assumptions. They study a

choice model of boundedly rational agents having limited attention. In particular, consideration

set formation is stochastic, where every alternative is considered with a given unobservable

probability, the attention parameter. After forming a consideration set, a consumer purchases

the product that maximizes a preference relation within considered products. As the main

result, they demonstrate that this random choice rule is the only one for which the impact of

removing an alternative on the choice probability of any other alternative is asymmetric and

menu independent. In contrast to their model, we assume that there is a distribution function

over all possible subsets in the product universe, and every time customers make a purchase, they

sample a consideration set according to this distribution, and then choose the most preferred

item. Our model generalizes the one by [68], relaxing the assumption of the lack of correlation

between attention parameters, i.e., independent formation of consideration sets. [70] introduce

the concept of attention filter that relates to consideration set formation. The authors showed

that their consideration set model of choice can be characterized by relaxing the weak axiom

of the revealed preferences (WARP), and provided a choice theoretical foundation to retrieve

consumer’s attention and preferences from choice data. There are some other papers in the

economics literature that study rational inattention choice models [15, 27, 71].

The ideas of identifying consideration sets from sales transaction data can be extended to

finding competition sets. For the latter, a recent alternative approach was developed by [63], who

present a network-driven methodology to find competition sets and applied it to the hotel indus-

try using a combination of search and clickstream data. [61] present an approach to characterize

competition sets in the hotel travel industry. They estimate demand with a random-coefficient

multinomial logit model and identify customer segments to build competition sets. Theoretical

models of spatial competitions dates back to the seminal paper by [46], where the authors assume

that companies compete only with nearest neighbors. Several other recent empirical papers con-

sider the models of market competition through location-based measures in different industries:
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bike-sharing [36], movie theaters [22], fast food industry [2, 91], car dealer networks [1, 76], and

gasoline market [77]. Alternative empirical studies focus on estimation of competition through

cross-price elasticities [9, 21].

The approach that we use to model consideration sets is part of the current trend of choice-

based demand estimation in the OM-related literature [67, 90, 98]. [3] consider the problem

of assortment optimization under the general consider-then-choose model. In particular, they

proposed a dynamic programming formulation by introducing a bipartite graph representation of

the assortment problem which is proved to be NP-hard [4]. They demonstrate that the dynamic

program can be solved in polynomial time for the special cases of consideration set formation.

[33] showed that assortment optimization problem under the restricted version of consideration

set choice model [68] runs in polynomial time even with capacity constraints. The general

consider-then-choose (GCC) choice model that we study in this chapter is a special case of a

general nonparametric discrete choice model, well studied in the literature [29, 83, 95], where all

the rankings are drawn from the same permutation of items in the product category and where

the stochasticity is coming from the consideration set formation. Motivated by the notion of

consideration sets, there are several other recent articles in the operations field that incorporate

cognitive limitations of consumers in their models [30, 31, 99].

2.2 General Consider-then-Choose model

In this section, we formally describe the setup and the model. We also present theoretical results

on the conditions under which our model can be identified from aggregated sales transaction

data.

We consider a universe 𝑁 of 𝑛 products {𝑎1, 𝑎2, . . . , 𝑎𝑛}. We let 𝑎0 denote the ‘no-purchase’

or the ‘outside’ option. Customers arrive to the store sequentially, and in each choice instance,

a customer is presented with a subset 𝑆 ⊆ 𝑁 of products and the customer chooses either one of

the products in 𝑆 or the outside option 𝑎0. We let P𝑗(𝑆) denote the probability that a customer

chooses product 𝑎𝑗 ∈ 𝑆 and P0(𝑆) – the probability that the customer chooses the outside option.

Our goal is to model this choice process through a probabilistic model that specifies all the choice

probabilities {P𝑗(𝑆) : 𝑎𝑗 ∈ 𝑆+, 𝑆 ⊆ 𝑁}, where we use 𝑆+ to denote the set 𝑆 ∪ {𝑎0}. We assume
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that the choice probabilities satisfy the standard probability laws: P𝑗(𝑆) ≥ 0 for all 𝑎𝑗 ∈ 𝑆+ and∑︀
𝑎𝑗∈𝑆+ P𝑗(𝑆) = 1 for all 𝑆 ⊆ 𝑁 .

In order to explicitly account for the fact that customers may not consider all the offered

products before making a choice, we assume that customer choices follow a two-stage consider-

then-choose model. In the first stage, the customer forms a consideration set 𝐶 ⊆ 𝑁 and in

the second stage, the customer chooses either a product from the set 𝑆 ∩ 𝐶 of products or the

outside option 𝑎0, when the offered set of products is 𝑆. In this model, for a product to be

purchased, it must be both offered and considered. The seller restricts customers’ choices by

deciding which products to offer. But the customer further restricts her choices to just the ones

in her consideration set because either she has strong unobserved preferences (which prevent her

from ever buying certain products), or cognitive overload prevents her from evaluating all the

products on offer before choosing.

The model is specified by two mathematical objects: a distribution 𝜆 : 2𝑁 → [0, 1] over

consideration sets such that
∑︀

𝐶⊆𝑁 𝜆(𝐶) = 1 and a choice rule that specifies which product is

chosen from the subset 𝑆 ∩ 𝐶. In each choice instance, a randomly drawn customer from the

population samples a consideration set 𝐶 according to 𝜆 and then chooses a product from the

set (𝑆 ∩ 𝐶)+ according to the choice rule. The most general model would accommodate any

distribution 𝜆 and choice rule, but such a general model cannot be identified from transaction

data alone. Therefore, we restrict the degrees of freedom, by assuming that customers’ choice

rule in the second stage is described by a single preference ordering over the products. The

preference ordering or ranking of the products in 𝑁 is described by a bijective ranking function

𝜎 : 𝑁 → {1, . . . , 𝑛} specifying a preference rank 𝜎(𝑎𝑗) for each product 𝑎𝑗. Assuming that

lower-valued ranks are preferred over higher-valued ranks, ranking 𝜎 indicates that product 𝑎

is preferred over product 𝑏 if and only if 𝜎(𝑎) < 𝜎(𝑏). The preference ordering 𝜎 induces an

antireflexive, antisymmetric, and transitive preference relation ≻𝜎, defined as 𝑎 ≻𝜎 𝑏 if and only

if 𝜎(𝑎) < 𝜎(𝑏). Under this choice rule, the customer chooses the most preferred product according

to 𝜎 from the subset 𝑆∩𝐶; that is, the customer chooses the product argmin {𝜎(𝑎𝑗) : 𝑎𝑗 ∈ 𝑆 ∩ 𝐶}

if 𝑆 ∩𝐶 ̸= ∅ and the outside option 𝑎0 otherwise. Note that we are implicitly assuming that the

outside option is the least preferred product in the ranking 𝜎, so the customer always makes a

purchase whenever 𝑆 ∩ 𝐶 is non-empty. This assumption is without loss of generality (WLOG)
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because otherwise the customer will never purchase a product 𝑎𝑗 that is less preferred than 𝑎0,

in which case product 𝑎𝑗 can be eliminated from the universe 𝑁 . With this restriction on the

choice rule, we show below that the model can be identified from the transaction data alone,

even without any further assumptions on 𝜆.

We refer to this model in which the distribution 𝜆 over consideration sets is unrestricted but

the choice rule is restricted to a single preference ordering ≻ as the general consider-then-choose

(GCC) model. It follows from our description above that the choice probability P𝑗(𝑆) under the

GCC model is given by

P𝑗(𝑆) =

⎧⎪⎨⎪⎩
∑︀

𝐶⊆𝑁 𝜆(𝐶) · I[𝑎𝑗 ∈ 𝑆 ∩ 𝐶] · I[𝑎𝑗 ≻𝜎 𝑎𝑘 ∀𝑎𝑘 ∈ 𝑆 ∩ 𝐶, 𝑎𝑘 ̸= 𝑎𝑗], if 𝑎𝑗 ∈ 𝑆∑︀
𝐶⊆𝑁 𝜆(𝐶) · I[𝑆 ∩ 𝐶 = ∅], if 𝑎𝑗 = 𝑎0,

(2.1)

where I[𝐴] is the standard indicator function taking the value 1 if condition 𝐴 is satisfied and

the value 0 otherwise. We further assume that the empty condition, that is, 𝐴 = ∅, is always

satisfied.

In order to understand how our model is related to existing models, we first ask if the GCC

model belongs to the general random utility maximization (RUM) class [10]. The RUM class

is the most studied choice model class in the literature and includes popular models, such as

the MNL, nested logit (NL), and mixture of MNLs (MMNL) models. At the core, the model

assumes that in each choice instance, customers sample utility values for the products according

to some joint distribution and chooses the offered product with the highest sampled utility value.

Equivalently, the RUM class of models is described by a distribution over preference orderings of

products [29, 87], so that a customer samples a preference ordering according to the distribution

and chooses the most preferred offered product according to the sampled preference list. We

show that the GCC model belongs to the class of RUM models, but the RUM models is a strict

superset of the GCC class. Specifically, we establish the following result.

Proposition 2.2.1. The GCC choice model is a special case of the RUM choice rule, that is,

𝐺𝐶𝐶 ⊂ 𝑅𝑈𝑀 , but 𝐺𝐶𝐶 ̸= 𝑅𝑈𝑀 .

The proof of the proposition is given in Section 5.2. It exhibits an example choice model that

belongs to the RUM class but not to the GCC class.
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While prior literature has studied consider-then-choose models, almost all of them have im-

posed restrictions on the structure of 𝜆, perhaps with less restrictive assumptions on the choice

rule. We differ from the literature, by allowing 𝜆 to be very general, but with the restriction that

the choice rule is fully described by a single preference list. As such, our model subsumes the

models of [68] and [3]. Proposition 2.2.1 is the first to study the relationship between the GCC

and the RUM model classes.

In the rest of this section, we study the theoretical properties of the GCCmodel—identification

conditions and robustness to noise in offer set information. Of course, when estimating such a

general distribution 𝜆 from data, we run into computational challenges in addition to identifi-

cation issues. To deal with those, we need to make additional assumptions on 𝜆. But we defer

these considerations to Sections 2.3 and beyond.

2.2.1 Identification of the GCC model

We now study the case when the offer sets are perfectly observed. In this case, we show that the

GCC model is fully identfied only from the observed choice probabilities. In contrast, the RUM

model is not fully identified when 𝑛 ≥ 4 [84].

To establish our result, suppose that purchases are generated according to an underlying GCC

model, and we observe the choice probabilities P𝑗(𝑆) for all products 𝑎𝑗 ∈ 𝑆+ and all offer sets

𝑆 ⊆ 𝑁 ; here, we are ignoring any finite sample issues and assuming that the choice probabilities

are exactly known. Then, we can recover the underlying parameters of the GCC model from the

collection of choice probabilities {P𝑗(𝑆) : 𝑎𝑗 ∈ 𝑆+, 𝑆 ⊆ 𝑁}. In particular, we have the following

result:

Proposition 2.2.2. Suppose that the collection of choice probabilities {P0(𝑆) : 𝑆 ⊆ 𝑁} are con-

sistent with an underlying GCC model. Then, we have that

𝜆(𝐶) =
∑︁
𝑋⊆𝐶

(−1)|𝐶|−|𝑋|P0(𝑁 ∖𝑋). (2.2)

The result of the proposition follows immediately from a particular form of the inclusion-

exclusion principle stated in [37]. For any finite set 𝑍, if 𝑓 : 2𝑍 → R and 𝑔 : 2𝑍 → R are two
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real-valued set functions defined on the subsets of 𝑍 such that 𝑔(𝑋) =
∑︀

𝑌⊆𝑋 𝑓(𝑌 ), then the

inclusion-exclusion principle states that 𝑓(𝑌 ) =
∑︀

𝑋⊆𝑌 (−1)|𝑌 |−|𝑋|𝑔(𝑋). Our result then follows

from noting that P0(𝑁 ∖𝑋) =
∑︀

𝐶⊆𝑋 𝜆(𝐶). For completeness, we provide an alternative proof

of this result in Section 5.2 from first principles.

The result of Proposition 2.2.2 shows that to recover 𝜆, we only need the choice probabilities

of the outside option under all the offer sets. On the other hand, the underlying preference

ordering 𝜎 can be recovered independently from 𝜆 using the choice probabilities under all offer

sets of size at most two; that is, {P𝑗(𝑆) : 𝑎𝑗 ∈ 𝑆, |𝑆| ≤ 2}. Specifically, we have the following

result:

Proposition 2.2.3. Suppose that the collection of choice probabilities {P𝑗(𝑆) : 𝑎𝑗 ∈ 𝑆, |𝑆| ≤ 2}

are consistent with an underlying GCC model. Then,

𝜎(𝑎𝑗) < 𝜎(𝑎𝑖) if P𝑖({𝑎𝑖}) > P𝑖({𝑎𝑖, 𝑎𝑗}), for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ̸= 𝑗.

The proof of Proposition 2.2.3 follows directly from the definition of the GCC model, and is

presented in Section 5.2.

Empirical evidence in the marketing literature suggests that the size of the consideration sets

for most of the customers in different categories is relatively small, e.g., [48] concludes that

the median number of laundry detergents that a consumer considers before making a purchase

is one. When the size of consideration sets in the GCC model is bounded above by 𝑘 < 𝑛, it

follows immediately from Proposition 2.2.2 that to recover 𝜆, we need choice probabilities under

offer sets of size 𝑛− 𝑘 and larger.

Corollary 2.2.1. In a GCC model, suppose that customers sample consideration sets of size at

most 𝑘 for some 1 ≤ 𝑘 ≤ 𝑛; that is, 𝜆(𝐶) = 0 whenever |𝐶| > 𝑘. Then, the distribution over

consideration sets 𝜆 can be identified using choice probabilities under offer sets of size 𝑛 − 𝑘 or

larger, that is, from the collection {P0(𝑆) : |𝑆| ≥ 𝑛− 𝑘}.

When the consideration sets are small, Corollary 2.2.1 shows that it is sufficient to collect

choice probabilities for large offer sets. In many applications, however, firms cannot offer very

large offer sets to its customers because of space constraint either in a physical store or on the
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website. The next proposition shows that when consideration sets are small, firms can identify

𝜆 by offering only small offer sets:

Proposition 2.2.4. In a GCC model, suppose that customers sample consideration sets of size

at most 𝑘 for some 1 ≤ 𝑘 ≤ 𝑛; that is, 𝜆(𝐶) = 0 whenever |𝐶| > 𝑘. Let {P0(𝑆) : 𝑆 ⊆ 𝑁, |𝑆| ≤ 𝑘}

be a collection of choice probabilities that are consistent with such a GCC model. Then, we have

𝜆(𝐶) =
∑︁
𝑋⊆𝑁

∑︁
𝑌⊇𝑋∪𝐶

(−1)1+|𝑌 |−|𝑋Δ𝐶| · I[|𝑋 ∪ 𝐶| ≤ 𝑘 < |𝑌 |] · P0(𝑋),

where 𝑋Δ𝐶 denotes the symmetric difffernce (𝑋 ∖ 𝐶) ∪ (𝐶 ∖𝑋).

The proof of the proposition is quite involved. It requires establishing several combinatorial

identities. We present the proof in Section 5.2. The proposition shows that when the consider-

ation sets are of size at most 𝑘, then the consideration set distribution can be recovered using

choice probabilities of offer sets of size at most 𝑘.

In all the results above, we assumed that the collection of observed choice probabilities is

consistent with an underlying GCC model. To verify that is indeed the case, we establish a set of

necessary and sufficient conditions that the observed choice probabilities must satisfy to ensure

consistency. In particular, we have the following proposition:

Proposition 2.2.5. The collection of choice probabilities {P𝑗(𝑆) : 𝑎𝑗 ∈ 𝑆+, 𝑆 ⊆ 𝑁} is consistent

with a GCC model with unique parameters 𝜎 and consideration distribution 𝜆 such that 𝜆(𝐶) > 0

for all |𝐶| ≤ 3 if and only if it satisfies the following conditions:

Condition 1. For all offer sets 𝑆 ⊆ 𝑁 and 𝑎1, 𝑎2 ∈ 𝑆 such that 𝑎1 ̸= 𝑎2: if P1(𝑆 ∖ {𝑎2}) ̸=

P1(𝑆), then it must be that P2(𝑆 ∖ {𝑎1}) = P2(𝑆).

Condition 2. For all offer sets 𝑆, 𝑆 ′ ⊆ 𝑁 and 𝑎1, 𝑎2 ∈ 𝑆 ∩ 𝑆 ′ such that 𝑎1 ̸= 𝑎2: if

P1(𝑆 ∖ {𝑎2})
(=)
> P1(𝑆), then it must be that P1(𝑆

′ ∖ {𝑎2})
(=)
> P1(𝑆

′).

Condition 3. For all offer sets 𝑆 ⊆ 𝑁 , we have that
∑︀

𝑋⊆𝑆(−1)|𝑆|−|𝑋|P0(𝑁 ∖𝑋) ≥ 0 with

a strict inequality when |𝑆| ≤ 3.

Propostion 2.2.5 is similar to the set of conditions established in [68, Theorem 1] for the case

when the consideration set distribution 𝜆 has the product form. Our result extends their result to
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a general consideration set distribution 𝜆. Condition 1 is similar to the I-Asymmetry assumption

in [68], which states that either product 𝑎2 influences (note that the influence may either be an

increase or decrease) the sales of product 𝑎1 or vice versa but not both. In other words, influence

is one directional and the products cannot influence the sales of each other. Condition 2 states

that if product 𝑎2 cannibalizes the sales of product 𝑎1 is one offer set, then it must continue

to do that in all the offer sets. That is, the direction of infleunce is consistent across all the

offer sets. Condition 3 is a technical restriction to ensure the existence of a valid probability

distribution function 𝜆 over the consideration sets. The strict inequality in Condition 3 is needed

to ensure the preference list over products in 𝑁 satisfies the transitivity requirement. The

proof of Proposition 2.2.5 is presented in Section 5.2 in the Appendix. Establishing necessity is

straightforward. But establishing sufficiency is challenging.

2.3 Data model and estimation methodology

We begin this section by focusing on a special case of GCC model, in which products enter

consideration sets independently. We provide mixed integer non-linear programming (MINLP)

formulation of the maximum likelihood estimation (MLE) problem to calibrate this model. Then,

we show that solving MINLP can be reduced to solving a sequence of mixed integer linear

programs (MILPs) and propose an outer-approximation and cutting plane algorithms (see Section

2.4) in order to implement it. We continue with a MINLP formulation of the MLE problem to

infer GCC model parameters from sales transaction data. We propose the EM-based algorithm

to estimate GCC model. Next, we demonstrate how to model consideration set formation with

covariates, such as product features and price. In particular, we focus on three widely used

methods in machine learning to describe consideration sets of customers: logistic-based, decision

tree-based, and random forest-based consideration set models. We show that logistic-based

consider-then-choose model can be calibrated using outer-approximation algorithm (see Section

2.4). We conclude the section by presenting two score metrics, which are used in this chapter to

assess the prediction performance of the models, followed by the description of the benchmark.
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2.3.1 Single class ICC model

We first consider a special case of the GCC model in which the consideration set distribution has

a product form. Specifically, we assume that customers build a consideration set by tossing a

coin for each product 𝑎𝑗 and deciding to independently include it with probability 𝜃𝑗 ∈ [0, 1]. It

then follows that 𝜆(𝐶) =
∏︀

𝑎𝑗∈𝐶 𝜃𝑗
∏︀

𝑎𝑗 /∈𝐶(1− 𝜃𝑗). We call this model the independent consider-

then-chooses (ICC) model. This was also the model studied in [68]. It can be shown that under

the ICC model, the probability of choosing product 𝑎𝑗 from offer set 𝑆 is given by

P𝑗(𝑆) = 𝜃𝑗
∏︁

𝑎𝑖∈𝑆 : 𝑎𝑖≻𝜎𝑎𝑗

(1− 𝜃𝑖).

We then formulate the maximum likelihood estimation problem for the ICC model and sim-

plify it in such a way so that we can apply the outer-approximation algorithm in Section 2.4 in

order to calibrate it. The data log-likelihood function under the single class ICC model is given

by

L (𝜃, 𝛿) =
𝑇∑︁
𝑡=1

[︁
log 𝜃𝑗𝑡 +

∑︁
𝑎𝑘∈𝑆𝑡:
𝑘 ̸=𝑗𝑡

[︀
𝛿𝑗𝑡𝑘 log(1− 𝜃𝑘)

]︀]︁
,

and the MLE problem can be represented in the following way:

max
𝜃,𝛿

L (𝜃, 𝛿) (2.3)

subject to 𝛿 satisfy (2.15)− (2.17),

0 ≤ 𝜃𝑗 ≤ 1, ∀ 𝑗.

To simplify the likelihood function, we introduce a new variable 𝜏 , defined as 𝜏𝑗𝑘 = 𝛿𝑗𝑘𝜃𝑘, ∀ 𝑗, 𝑘,

and rewrite the likelihood function as follows:

L (𝜃, 𝜏 ) =
𝑇∑︁
𝑡=1

[︁
log 𝜃𝑗𝑡 +

∑︁
𝑎𝑘∈𝑆𝑡:
𝑘 ̸=𝑗𝑡

log(1− 𝜏𝑗𝑡𝑘)
]︁
.

110



www.manaraa.com

We can then formulate the MLE problem in terms of the variables (𝛿, 𝜏 ,𝜃):

max
𝜃,𝜏 ,𝛿

L (𝜃, 𝜏 ) (2.4)

s.t.: 𝜏𝑗𝑘 ≤ 𝜃𝑘, ∀ 𝑗, 𝑘, (2.5)

𝜏𝑗𝑘 ≤ 𝛿𝑗𝑘, ∀ 𝑗, 𝑘, (2.6)

𝜏𝑗𝑘 ≥ 𝜃𝑘 + 𝛿𝑗𝑘 − 1, ∀ 𝑗, 𝑘, (2.7)

𝜏𝑗𝑘 ≥ 0, ∀ 𝑗, 𝑘, (2.8)

𝛿𝑗𝑘 + 𝛿𝑘𝑗 = 1, ∀ 𝑗, 𝑘, 𝑗 ≤ 𝑘, (2.9)

𝛿𝑗𝑘 + 𝛿𝑘𝑝 + 𝛿𝑝𝑗 ≤ 2, ∀ 𝑗, 𝑘, 𝑝 𝑗 ̸= 𝑘 ̸= 𝑝, (2.10)

0 ≤ 𝜃𝑗 ≤ 1, ∀ 𝑗, (2.11)

𝛿𝑗𝑘 ∈ {0, 1}, ∀ 𝑗, 𝑘. (2.12)

Estimation methodology

Note that the optimization problem (2.4) can be represented as the optimization problem (P)

in Section 2.4.2 without loss of generality. As a result, we can formally apply the outer-

approximation method [26] to solve the optimization problem (P), see Algorithm 1 in Section

2.4. The proposed algorithm effectively exploits its structure, where we have a linearity of the

binary variables and convexity of the non-linear constraint, which only depend on continuous

variables. In order to linearize the optimization problem, we use the outer-approximation of a

convex set by the intersection of the collection of its supporting half-spaces. To this end, the

outer-approximation defines the optimization subproblem as an MILP. Because of the poten-

tially many continuous points required for outer-approximation, we solve a sequence of MILPs

to build up increasingly tight relaxations of the original MINLP. Overall, the proposed Algorithm

1 consists of solving a finite sequence of convex problems and relaxed versions of MILPs.

2.3.2 GCC model

We start by formulating the associated maximum likelihood estimation problem for the GCC

model. We assume access to sales data, which consists of the purchasing transactions over 𝑇

111



www.manaraa.com

periods. Every purchasing instance is represented by a tuple (𝑎𝑗𝑡 , 𝑆𝑡) for 𝑡 ∈ {1, ..., 𝑇}, where

𝑆𝑡 denotes the subset of products offered in period 𝑡, and 𝑎𝑗𝑡 denotes the product purchased by

then. Next, we define binary linear ordering variable 𝛿𝑘𝑗 for 𝑎𝑘, 𝑎𝑗 ∈ 𝑁, 𝑘 ̸= 𝑗, where 𝛿𝑘𝑗 = 1

if product 𝑎𝑘 goes before product 𝑎𝑗 in the preference list ≻ (or equivalently, 𝜎), and 𝛿𝑘𝑗 = 0

otherwise. The associated log-likelihood function is given by

L (𝛿,𝜆) =
𝑇∑︁
𝑡=1

log

(︃∑︁
𝐶⊆𝑁

𝜆(𝐶) · I[𝑎𝑗𝑡 ∈ 𝑆𝑡 ∩ 𝐶] · I[𝛿𝑗𝑡𝑘 = 1, ∀𝑎𝑘 ∈ 𝑆𝑡 ∩ 𝐶, 𝑘 ̸= 𝑗𝑡]

)︃
. (2.13)

The likelihood estimation (MLE) problem can be formulated as follows:

max
𝛿,𝜆

L (𝛿,𝜆) (2.14)

s.t.: 𝛿𝑗𝑘 + 𝛿𝑘𝑗 = 1, ∀ 𝑗, 𝑘, 𝑗 < 𝑘, (2.15)

𝛿𝑗𝑘 + 𝛿𝑘𝑝 + 𝛿𝑝𝑗 ≤ 2, ∀ 𝑗, 𝑘, 𝑝, 𝑗 ̸= 𝑘 ̸= 𝑝, (2.16)

𝜆(𝐶) ≥ 0, ∀ 𝐶 ⊆ 𝑁,∑︁
𝐶⊆𝑁

𝜆(𝐶) = 1,

𝛿𝑗𝑘 ∈ {0, 1}, ∀ 𝑗, 𝑘. (2.17)

The first set of equalities guarantees that either product 𝑎𝑗 is preferred to product 𝑎𝑘 in the

rank list or product 𝑎𝑘 is preferred to product 𝑎𝑗. The second set of constraints ensures a

linear ordering of products. The third and fourth sets of inequalities ensure the validity of the

probability distribution function 𝜆 over consideration sets.

Estimation methodology

We divide all the transactions into 𝐾 segments such that for every segment ℎ ∈ {1, ..., 𝐾} a cus-

tomer considers an arbitrary subset of items 𝐶 ⊆ 𝑁 with likelihood 𝜆(𝐶) =
∏︀

𝑎𝑗∈𝐶 𝜃ℎ𝑗
∏︀

𝑎𝑗 /∈𝐶(1−

𝜃ℎ𝑗), where 𝜃ℎ𝑗 is the probability to include item 𝑎𝑗 in the consideration set in the segment ℎ.

Consequently, every segment of customers forms their consideration set probabilistically, and
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knowing the attention parameters 𝜃ℎ, we can easily infer the “central” consideration set (i.e.,

the subset of items in the product universe that has the highest probability to be considered) for

customers from the segment ℎ, i.e., the “central” consideration set consists of all the items 𝑎𝑗 in

the product universe such that 𝜃ℎ𝑗 ≥ 0.5. Recall that preferences of individuals are homogeneous,

i.e., they can be characterized by a unique preference order 𝜎.

A key observation is that, for sufficiently large 𝐾, we can calibrate GCC model by estimating

the following three components: (1) segment probabilities, (2) attention parameters for each

segment, and (3) the ranking. Therefore, this parametrization of the GCC model is a natural

approach when we have sparsity in customer segments. In Section 2.4.3, we provide the detailed

analysis of how to calibrate the GCC model with the EM algorithm. Note that if we have access to

the panel data, then for each individual 𝑖 we can estimate the posterior membership probabilities

for each segment based on individuals’ history of sales transactions. In the subsequent sections,

we estimate the model for 𝐾 = 1, 2, ..., 5 and report the best performance measure from these

5 variants, for every prediction metric that we introduce below. Note that we use the similar

procedure to estimate the GCC model with features, with the only difference that customers from

each segment ℎ sample consideration sets according to the Logistic-based consider-then-choose

(L-CC) model, which takes into account the feature representation of products (see Section 2.3.3).

2.3.3 Consider-then-choose models with features

Recall our general framework – the two-stage choice process, where consumers consider a subset

of the offered products in the first stage and then, in the second stage, choose the most preferred

product from the set considered. In this section, we revisit the first stage, i.e., the consideration

set formation stage. We describe three types of consideration set formation models with features:

∙ Logistic-based consider-then-choose model. We assume that customers have linear-in-parameters

utility 𝑈𝑗 from considering product 𝑎𝑗 ∈ 𝒩 , given by

𝑈𝑗 = 𝛽0
𝑗 +

∑︁
𝑘

𝛽𝑘𝑥𝑗𝑘 + 𝜀𝑗,

where 𝑥𝑗𝑘 is the observed 𝑘th feature of product 𝑎𝑗; and 𝜀𝑗 is a random variable distributed

as a standard logistics, i.e., 𝜀𝑗 ∼ 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(1). Therefore, product 𝑎𝑗 is considered by an
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individual if and only if the utility from paying attention on it is non-negative, i.e.,

𝑎𝑗 ∈ 𝐶 iff 𝑈𝑗 = 𝛽0
𝑗 +

∑︁
𝑘

𝛽𝑘𝑥𝑗𝑘 + 𝜀𝑗 ≥ 0.

Then the attention probability of product 𝑎𝑗 is given by

Pr[𝑎𝑗 ∈ 𝐶] =
exp
(︀
𝛽0
𝑗 +

∑︀
𝑘 𝛽𝑘𝑥𝑗𝑘

)︀
1 + exp

(︀
𝛽0
𝑗 +

∑︀
𝑘 𝛽𝑘𝑥𝑗𝑘

)︀ .

∙ Decision tree-based consider-then-choose model. Here, it is assumed that individuals decide

which items to consider based on a tree with leaves 𝑚 ∈ {1, 2...,𝑀}, to which we can

associate a mean probability 𝑤𝑚 of whether the item is going to be considered or not (see

[74]). Then, we can write the probability to consider the item 𝑎𝑗 in the following way:

Pr[𝑎𝑗 ∈ 𝐶] =
𝑀∑︁

𝑚=1

𝑤𝑚I[𝑥𝑗 ∈ 𝑅𝑚] =
𝑀∑︁

𝑚=1

𝑤𝑚𝜑(𝑥𝑗,𝑣𝑚),

where 𝑅𝑚 is the 𝑚th region, i.e., the 𝑚th leaf; 𝑣𝑚 encodes the choice of features to split

on and the threshold value, on the path from the root to the 𝑚th leaf; and 𝜑(𝑥𝑗,𝑣𝑚) is

equal to 1 if 𝑥𝑗 belongs to the 𝑚th leaf, and equal to 0 otherwise.

∙ Random forest-based consider-then-choose model. In this case, we assume that individuals,

first, randomly sample a tree and then decide which items to consider based on the sampled

tree (see [74]). Note that a random forest avoids the overfitting problem of decision trees

by adding more trees instead of building one big tree. We can write the probability to

consider the item 𝑎𝑗 as follows:

Pr[𝑎𝑗 ∈ 𝐶] =
𝐾∑︁
𝑘=1

1

𝐾
𝑓𝑘(𝑥),

where 𝑓𝑘(𝑥) is the probability to consider the item 𝑎𝑗 according to the 𝑘′th decision tree.
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Estimation methodology

In a similar spirit to the Section 2.3.1, we can formulate the maximum likelihood estimation

problem for the logistic-based consider-then-choose model with product features in a such a way

so that we can apply the outer-approximation algorithm in Section 2.4 in order to calibrate it

(see Section 2.4.1). On the other hand, the calibration of DT-CC and RF-CC models is more

challenging. To this end, we need to estimate both the ranking 𝜎 and a decision tree (or a random

forest). Intuitively, both a decision tree and a random forest map product features into the binary

outcome variable of whether the product is going to be considered or not, in non-linear way. Note

that if the ranking 𝜎 is known, then the log-likelihood optimization is equivalent to calibrating

a classification decision tree or a random forest, with the splitting criteria based on the entropy

function. Then, given a decision tree and random forest, the log-likelihood optimization problem

reduces to solving MILP to find 𝜎. Therefore, the heuristic would be to repeat the following

steps: (1) optimize log-likelihood function condition on 𝜎̂ by calibrating the decision tree or

random forest, (2) optimize log-likelihood function condition on the calibrated decision tree or

random forest and obtain the ranking 𝜎, until either convergence (note that the convergence is

not guaranteed) or hitting the maximum number of iterations.

2.3.4 Prediction scores and benchmark

In this section, we describe two score metrics, which are used in our empirical study to quantify

the prediction power of the choice models in question. Regarding each of these scores, the main

objective is to predict the product to be purchased at time 𝑡 + 1 given the offer set 𝑆𝑡+1 at

time 𝑡+ 1. The first score, we use, is the MAPE, computed as follows:

MAPE =
1

|𝒩 |
∑︁
𝑎𝑗∈𝒩

|𝑛𝑗 − 𝑛̂𝑗|
10 + 𝑛̂𝑗

, and 𝑛̂𝑗 =
𝑇∑︁
𝑡=1

𝑓(𝑎𝑗, 𝑆𝑡),

where 𝑓(𝑎𝑗, 𝑆𝑡) is the probability to choose item 𝑗𝑡 under the offer set 𝑆𝑡 for the transaction at

time 𝑡; and 𝑛𝑗 is the observed number of times product 𝑎𝑗 was purchased during the time period

of length 𝑇 . Note that we add 10 in the denominator to deal with undefined instances. The
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second score, RMSE, is given by

RMSE =

⎯⎸⎸⎷ 1

|𝒩 |
∑︁
𝑎𝑗∈𝒩

(︂
𝑛𝑗 − 𝑛̂𝑗

𝑇

)︂2

.

Intuitively, both scores quantify the power of the model combinations to predict the market share

for each product, with lower scores indicating better predictive accuracy.

We compare our models with the benchmark, which is LC-MNL choice model with 𝐾 latent

classes. In this model, each customer belongs to one unobservable class, and customers from

class ℎ ∈ {1, 2, .., 𝐾} make purchases according to the MNL model associated with that class.

The model is described by the parameters of the MNL characterizing each class and by the

prior probabilities of customers belonging to each of the classes. Once the model parameters are

estimated, we make customer-level (or transaction-level) predictions by averaging the predictions

from 𝐾 single-class models, weighted by the posterior probability of class-membership. Similarly

to the GCC model, we estimated the model for K = 1,2,...,5 and report the best performance

measure from these 5 variants, for every performance metric that we introduced above.

2.4 Estimation methodologies of consider-then-choose mod-

els

We start this section by providing the MINLP formulation for the logistic based consider-then-

choose model. Then, we describe the outer-approximation algorithm, which is used to calibrate

different variants of consider-then-choose models, followed by the empirical validation of this

algorithm. We finish this section by describing the EM algorithm to calibrate the GCC and

GCGC models.

2.4.1 MINLP formulation: Logistic-based consider-then-choose model

In this subsection, we formulate the maximum likelihood estimation problem for the logistic-

based consider-then-choose model, and then simplify it in such a way so that we can apply the

outer-approximation algorithm in Section 2.4 in order to calibrate it. The data log-likelihood
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function under this model is given by

L (𝛽, 𝛿) =
𝑇∑︁
𝑡=1

[︁
log

𝑒𝛽𝑋𝑗𝑡

1 + 𝑒𝛽𝑋𝑗𝑡
+
∑︁

𝑎𝑘∈𝑆𝑡:
𝑘 ̸=𝑗𝑡

[︀
𝛿𝑗𝑡𝑘 log

1

1 + 𝑒𝛽𝑋𝑘𝑡

]︀]︁
,

and the ML problem can be represented in the following way:

max
𝛽,𝛿

L (𝛽, 𝛿) (2.18)

s.t.: 𝛿𝑗𝑘 + 𝛿𝑘𝑗 = 1, ∀ 𝑗, 𝑘, 𝑗 ≤ 𝑘,

𝛿𝑗𝑘 + 𝛿𝑘𝑝 + 𝛿𝑝𝑗 ≤ 2, ∀ 𝑗, 𝑘, 𝑝 𝑗 ̸= 𝑘 ̸= 𝑝,

0 ≤ 𝜃𝑗 ≤ 1, ∀ 𝑗,

𝛿𝑗𝑘 ∈ {0, 1}, ∀ 𝑗, 𝑘.

To simplify the likelihood function, we introduce a new variable 𝜏 , defined as 𝜏𝑖𝑗𝑘 = 𝛿𝑗𝑘𝛽𝑖, ∀ 𝑖, 𝑗, 𝑘,

and rewrite the likelihood function in the following way:

L (𝛽, 𝛿, 𝜏 ) =
𝑇∑︁
𝑡=1

[︁
log

𝑒𝛽𝑋𝑗𝑡

1 + 𝑒𝛽𝑋𝑗𝑡
+
∑︁

𝑎𝑘∈𝑆𝑡:
𝑘 ̸=𝑗𝑡

(𝛿𝑗𝑡𝑘 − 1) log

(︂
1

2

)︂
+
∑︁

𝑎𝑘∈𝑆𝑡:
𝑘 ̸=𝑗𝑡

[︀
log

1

1 + 𝑒
∑︀

𝑖 𝜏𝑖𝑗𝑡𝑘𝑋𝑖𝑘𝑡

]︀]︁
,

since if 𝛿𝑗𝑡𝑘 = 1 we have that 𝜏𝑖𝑗𝑡𝑘 = 𝛽𝑖, ∀ 𝑖, and

(𝛿𝑗𝑡𝑘 − 1) log

(︂
1

2

)︂
+ log

1

1 + 𝑒
∑︀

𝑖 𝜏𝑖𝑗𝑡𝑘𝑋𝑖𝑘𝑡

= log
1

1 + 𝑒
∑︀

𝑖 𝜏𝑖𝑗𝑡𝑘𝑋𝑖𝑘𝑡

= log
1

1 + 𝑒
∑︀

𝑖 𝛽𝑋𝑘𝑡

,

if 𝛿𝑗𝑡𝑘 = 0 we have that 𝜏𝑖𝑗𝑡𝑘 = 0, ∀ 𝑖, and

(𝛿𝑗𝑡𝑘 − 1) log

(︂
1

2

)︂
+ log

1

1 + 𝑒
∑︀

𝑖 𝜏𝑖𝑗𝑡𝑘𝑋𝑖𝑘𝑡

= − log

(︂
1

2

)︂
+ log

1

1 + 𝑒0
= 0.
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Let 𝑀 denote the value of a very large constant. We can then formulate the MLE problem in

terms of the variables (𝛿, 𝛽, 𝜃):

max
𝜃,𝜏 ,𝛿

L (𝛽, 𝜏 ) +
∑︁

𝑎𝑘∈𝑆𝑡:
𝑘 ̸=𝑗𝑡

(𝛿𝑗𝑡𝑘 − 1) log

(︂
1

2

)︂
(2.19)

s.t.: 𝜏𝑖𝑗𝑘 ≤ 𝛽𝑖, ∀ 𝑖, 𝑗, 𝑘,

𝜏𝑖𝑗𝑘 ≤𝑀𝛿𝑗𝑘, ∀ 𝑖, 𝑗, 𝑘,

𝜏𝑖𝑗𝑘 ≥ 𝛽𝑖 +𝑀𝛿𝑗𝑘 −𝑀, ∀ 𝑖, 𝑗, 𝑘,

𝜏𝑗𝑘 ≥ −𝑀𝛿𝑗𝑘, ∀ 𝑗, 𝑘,

𝛿𝑗𝑘 + 𝛿𝑘𝑗 = 1, ∀ 𝑗, 𝑘, 𝑗 ≤ 𝑘,

𝛿𝑗𝑘 + 𝛿𝑘𝑝 + 𝛿𝑝𝑗 ≤ 2, ∀ 𝑗, 𝑘, 𝑝 𝑗 ̸= 𝑘 ̸= 𝑝,

𝛿𝑗𝑘 ∈ {0, 1}, ∀ 𝑗, 𝑘,

where

L (𝛽, 𝜏 ) =
𝑇∑︁
𝑡=1

[︁
log

𝑒𝛽𝑋𝑗𝑡

1 + 𝑒𝛽𝑋𝑗𝑡
+
∑︁

𝑎𝑘∈𝑆𝑡:
𝑘 ̸=𝑗𝑡

[︀
log

1

1 + 𝑒
∑︀

𝑖 𝜏𝑖𝑗𝑡𝑘𝑋𝑖𝑘𝑡

]︀]︁
.

2.4.2 Estimation methodology: outer-approximation algorithm

The optimization problems (2.4) and (2.19) have a similar structure and can be represented as

the following optimization problem without loss of generality:

max
𝜃,𝜏 ,𝛿,𝜇

𝜇 (P)

s.t.: 𝜇1 ≤ L (𝜃, 𝜏 ),

𝐴𝜃 +𝐵𝜏 + 𝐶𝛿 ≤ 0,

𝜇 = 𝜇1 + 𝐸𝛿,

𝜇𝐿 ≤ 𝜇 ≤ 𝜇𝑈 ,

𝛿𝑗𝑘 ∈ {0, 1}, ∀ 𝑗, 𝑘,
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where L (𝜃, 𝜏 ) is a concave function.

Define, for given (𝜃𝑖, 𝜏 𝑖):

𝐷(𝜃𝑖, 𝜏 𝑖) = {𝜃, 𝜏 : L (𝜃𝑖, 𝜏 𝑖) +
𝜕L (𝜃𝑖, 𝜏 𝑖)

𝜕𝜃
+
𝜕L (𝜃𝑖, 𝜏 𝑖)

𝜕𝜏
− 𝜇1 ≥ 0, 𝜇 ∈ ℛ1}

Define for given 𝛿𝑖 the concave subproblem 𝑆(𝛿𝑖):

max
𝜃,𝜏 ,𝜇

𝜇 (𝑆(𝛿𝑖))

s.t.: 𝜇 ≤ L (𝜃, 𝜏 ),

𝐴𝜃 +𝐵𝜏 + 𝐶𝛿𝑖 ≤ 0.

𝜇 = 𝜇1 + 𝐸𝛿𝑖,

Define, for given Ω𝑖, 𝜇𝑖
𝐿, and 𝜇

𝑖
𝑈 , the MILP subproblem 𝑀 𝑖:

max
𝜃,𝜏 ,𝛿,𝜇

𝜇 (𝑀 𝑖)

s.t.: (𝜃, 𝜏 ) ∈ Ω𝑖,

𝐴𝜃 +𝐵𝜏 + 𝐶𝛿 ≤ 0,

𝜇 = 𝜇1 + 𝐸𝛿,

𝜇𝐿 ≤ 𝜇 ≤ 𝜇𝑈 ,

𝛿𝑗𝑘 ∈ {0, 1}, ∀ 𝑗, 𝑘.

We can now formally apply the outer-approximation method [26] to solve the optimization prob-

lem (P), see Algorithm 1. The proposed algorithm effectively exploits the structure of the

optimization problem (P) where we have a linearity of the binary variables and convexity of

the non-linear constraint, which only depends on continuous variables. In order to linearize

the optimization problem, we use the outer-approximation of a convex set by intersection of its

collection of supporting half-spaces. To this end, the outer approximation defines the optimiza-

tion problem (𝑀 𝑖) as MILP. Because of the potentially many continuous points required for
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outer-approximation, we solve a sequence of MILPs to build up increasingly tight relaxation of

the original MINLP. Overall, the proposed Algorithm 1 consists of solving a finite sequence of

convex problems (𝑆(𝛿𝑖)) and relaxed versions of a MILP (𝑀 𝑖).

Note that Algorithm 1 to solve optimization problem (P) requires the solution of both convex

optimization problem (𝑆(𝛿𝑖)) and MILP (𝑀 𝑖). The solution of the convex optimization problem

(𝑆(𝛿𝑖)) in each iteration might be computationally intensive; while in solving the MILP (𝑀 𝑖),

the computational work, on the other hand, might be more moderate, because for every iteration

𝑖 we need to solve the MILP problem (𝑀 𝑖), which is the previous MILP problem (𝑀 𝑖−1) with

only one additional linear constraint added. Therefore, we propose to use the cutting plane

algorithm to solve the MINLP in this case [100], which would require the solution of only the

finite sequence of MILP problem (𝑀 𝑖), see Algorithm 2. Even though the main iteration loop of

Algorithm 1 is, generally, more efficient, we have global convergence for both Algorithms 1 and 2.

Algorithm 1 Outer-approximation algorithm for optimization problem (P)

1: procedure Outer-approximation(P)
2: Ω0 = ℛ𝑛 ×ℛ𝑚, 𝜇𝐿 = −∞, 𝜇𝑈 =∞, 𝑖 = 1
3: Select arbitrary 𝛿1, i.e., it can be arbitrary full ranking
4: while |𝜇𝑈 − 𝜇𝐿| > 𝜀 do
5: Solve concave subproblem 𝑆(𝛿𝑖) such that 𝜇𝐿 = 𝜇* (i.e., the optimal objective function

of 𝑆(𝛿𝑖)), and (𝜃𝑖, 𝜏 𝑖) = (𝜃*, 𝜏 *) (i.e., the optimal solution of 𝑆(𝛿𝑖))
6: Set Ω𝑖 = Ω𝑖−1 ∩𝐷(𝜃𝑖, 𝜏 𝑖)
7: Solve MILP subproblem 𝑀 𝑖 such that 𝜇𝑈 = 𝜇* (i.e., the optimal objective function

of 𝑀 𝑖), and (𝜃𝑖, 𝜏 𝑖, 𝛿𝑖) = (𝜃*, 𝜏 *, 𝛿*) (i.e., the optimal solution of 𝑀 𝑖))
8: 𝑖 = 𝑖+ 1

9:

10: return (𝜃𝑖, 𝜏 𝑖, 𝛿𝑖).

Empirical validation of the algorithms

In this subsection, we analyze the performance of the outer-approximation algorithm 1 and

cutting plane algorithm 2 to estimate ICC model with IRI Academic dataset. We limited the

running time of the algorithms by 3 hours, and the precision was set to 1e-6. It follows from

Figure 2-1 that the optimality gap of the outer-approximation algorithm 1 to calibrate the ICC
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Algorithm 2 Cutting plane algorithm for optimization problem (P)

1: procedure Cutting plane(P)
2: Ω0 = ℛ𝑛 ×ℛ𝑚, 𝜇𝐿 = −∞, 𝜇𝑈 =∞, 𝑖 = 1
3: Select arbitrary 𝛿1, i.e., it can be arbitrary full ranking
4: Select arbitrary 𝜆1, i.e., it can be arbitrary distribution over consideration sets
5: Set 𝜏 1 = 𝛿1 · 𝜆1, 𝜇0

𝑈 = −∞, 𝜇1
𝑈 =∞

6: while
⃒⃒
𝜇𝑖
𝑈 − 𝜇𝑖−1

𝑈

⃒⃒
> 𝜀 do

7: Set Ω𝑖 = Ω𝑖−1 ∩𝐷(𝜃𝑖, 𝜏 𝑖)
8: Solve MILP subproblem 𝑀 𝑖 such that 𝜇𝑈 = 𝜇*, 𝜇𝑖

𝑈 = 𝜇* (i.e., the optimal objective
function of 𝑀 𝑖), and (𝜃𝑖, 𝜏 𝑖, 𝛿𝑖) = (𝜃*, 𝜏 *, 𝛿*) (i.e., the optimal solution of 𝑀 𝑖))

9: 𝑖 = 𝑖+ 1

10:

11: return (𝜃𝑖, 𝜏 𝑖, 𝛿𝑖).

Figure 2-1: Results of applying the outer-approximation algorithm.

model is 3.3%, on average, over 20 product categories. On the other hand, it is shown in Figure 2-

2 that the optimality gap of the cutting plane algorithm 2 to calibrate the ICC model is 4.5%,

on average, over 20 product categories. Following these findings, we apply outer-approximation

algorithm 1 to calibrate ICC model in this chapter, as it provides significantly faster convergence

to the optimal solution, which is consistent with previous studies.

2.4.3 GCC estimation methodology: EM algorithm

In this section, we present the EM algorithm to calibrate the GCC model. We provide two

versions of this algorithm, which can be applied with the aggregate-level and individual-level

sales transaction data.
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Figure 2-2: Results of applying the cutting plane algorithm.

Estimation with aggregate level data

The log-likelihood function to calibrate the GCC model, after we reparametrize it by dividing

all the transactions into 𝐾 segments, is given by

logL (𝜃,𝛾,≻𝜎) =
𝑇∑︁
𝑡=1

log
(︁ 𝐾∑︁

ℎ=1

𝛾ℎ𝜃ℎ,𝑗𝑡
∏︁

𝑎𝑗∈𝑆𝑡:
𝑎𝑗≻𝑎𝑗𝑡

(1− 𝜃ℎ𝑗)
)︁
, (2.20)

where 𝛾ℎ ≥ 0 is the weight of the class ℎ a priory, s.t.
∑︀𝐾

ℎ=1 𝛾ℎ = 1; 𝑆𝑡 denotes the set of offered

items at time 𝑡; 𝑎𝑗𝑡 denotes the product purchased at time 𝑡; and 𝑇 denotes the time horizon.

Non-surprisingly, the above likelihood function is nonconcave. In order to alleviate the com-

plexity of solving the MLE problem directly, we use the Expectation Maximization (EM) algo-

rithm. First, let us outline the main principles of EM procedure. We start with arbitrary initial

parameter estimates x̂(0). Then, we compute the conditional expected value of the log-likelihood

function E[logL (x)|x̂(0)] (the “E”, expectation, step). Next, the resulting expected log-likelihood

function is maximized to compute new estimates x̂(1) (the “M”, maximization, step), and we re-

peat the algorithm until convergence to get a sequence of estimates {x̂(𝑞), 𝑞 = 1, 2, ...}. We further

describe the E-step and M-step of every iteration and how we start the algorithm in the context

of our estimation problem.

Initialization: we initialize the EM with a random allocation of observations to one of the 𝐾

classes, resulting in an initial allocation 𝒟1,𝒟2, . . . ,𝒟𝐾 , which form a partition of the collection

of all the transactions. Then, we set 𝛾
(0)
ℎ = |𝒟ℎ|/(

∑︀𝐾
𝑑=1 |𝒟𝑑|). Next, ≻ (i.e., 𝜎) and 𝜃

(0)
ℎ𝑗 , for all
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ℎ ∈ {1, ..., 𝐾}, 𝑎𝑗 ∈ 𝑁+ are obtained by solving the following optimization problem:

max
≻,𝜃ℎ

∑︁
𝑡∈𝒟ℎ

(︁
log 𝜃ℎ,𝑗𝑡 +

∑︁
𝑎𝑗∈𝑆𝑡:
𝑎𝑗≻𝑎𝑗𝑡

log(1− 𝜃ℎ𝑗)
)︁
,

which is solved by using the outer-approximation algorithm in Section 2.4.2.

E-step: we compute 𝑃
(𝑞)
ℎ𝑡 , which is the membership probability of every transaction at time 𝑡

to belong to the segment ℎ based on the parameter estimates {≻(𝑞−1) 𝜃(𝑞−1),𝛾(𝑞−1)} and the

purchasing transactions data (𝑎𝑗𝑡 , 𝑆𝑡)|𝑇𝑡=1:

𝑃
(𝑞)
ℎ𝑡 = Pr

(︂
𝑡→ ℎ

⃒⃒⃒⃒
≻(𝑞−1),𝜃(𝑞−1),𝛾(𝑞−1), (𝑎𝑗𝑡 , 𝑆𝑡)|𝑇𝑡=1

)︂
= Pr

(︂
𝑡→ ℎ

⃒⃒⃒⃒
≻(𝑞−1),𝜃(𝑞−1),𝛾(𝑞−1), (𝑎𝑗𝑡 , 𝑆𝑡)

)︂
[ independence of purchases]

=

Pr

(︂
(𝑎𝑗𝑡 , 𝑆𝑡)

⃒⃒⃒⃒
≻(𝑞−1),𝜃(𝑞−1),𝛾(𝑞−1), 𝑡→ ℎ

)︂
· Pr

(︂
𝑡→ ℎ

⃒⃒⃒⃒
≻(𝑞−1),𝜃(𝑞−1),𝛾(𝑞−1)

)︂
Pr

(︂
(𝑎𝑗𝑡 , 𝑆𝑡)|

⃒⃒⃒⃒
≻(𝑞−1),𝜃(𝑞−1),𝛾(𝑞−1)

)︂

=

Pr

(︂
(𝑎𝑗𝑡 , 𝑆𝑡)

⃒⃒⃒⃒
≻(𝑞−1),𝜃(𝑞−1),𝛾(𝑞−1), 𝑡→ ℎ

)︂
· Pr

(︂
𝑡→ ℎ

⃒⃒⃒⃒
≻(𝑞−1),𝜃(𝑞−1),𝛾(𝑞−1)

)︂
∑︀𝐾

𝑟=1 Pr

(︂
(𝑎𝑗𝑡 , 𝑆𝑡)

⃒⃒⃒⃒
≻(𝑞−1),𝜃(𝑞−1),𝛾(𝑞−1), 𝑡→ 𝑟

)︂
· Pr

(︂
𝑡→ 𝑟

⃒⃒⃒⃒
≻(𝑞−1),𝜃(𝑞−1),𝛾(𝑞−1)

)︂

=

𝛾
(𝑞−1)
ℎ

[︃
𝜃
(𝑞−1)
ℎ,𝑗𝑡

∏︀
𝑎𝑗∈𝑆𝑡:

𝑎𝑗 ≻(𝑞−1) 𝑎𝑗𝑡

(1− 𝜃(𝑞−1)
ℎ𝑗 )

]︃
∑︀𝐾

𝑟=1

[︃
𝛾
(𝑞−1)
𝑟

(︁
𝜃
(𝑞−1)
𝑟,𝑗𝑡

∏︀
𝑎𝑗∈𝑆𝑡:

𝑎𝑗 ≻(𝑞−1) 𝑎𝑗𝑡

(1− 𝜃(𝑞−1)
𝑟𝑗 )

)︁]︃ ,

where “𝑡→ ℎ” denotes “ transaction at time 𝑡 belongs to the segment ℎ”. As a result, conditional

expected value of the log-likelihood function is given by

𝐾∑︁
ℎ=1

𝑇∑︁
𝑡=1

𝑃
(𝑞)
ℎ𝑡 log

(︁
𝜃ℎ,𝑗𝑡

∏︁
𝑎𝑗∈𝑆𝑡:
𝑎𝑗≻𝑎𝑗𝑡

(1− 𝜃ℎ𝑗)
)︁
.
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M-step: first, we update class membership probabilities for every segment ℎ ∈ {1, 2, ..., 𝐾}:

𝛾
(𝑞)
ℎ =

∑︀𝑇
𝑡=1 𝑃

(𝑞)
ℎ𝑡

𝑇
,

and then optimize the conditional expected value of the log-likelihood function, obtained in the

previous step, in terms of 𝜃 and ≻:

max
≻,𝜃

𝐾∑︁
ℎ=1

𝑇∑︁
𝑡=1

𝑃
(𝑞)
ℎ𝑡 log

(︁
𝜃ℎ,𝑗𝑡

∏︁
𝑎𝑗∈𝑆𝑡:
𝑎𝑗≻𝑎𝑗𝑡

(1− 𝜃ℎ𝑗)
)︁
,

which is solved using outer-approximation algorithm in Section 2.4.2.

Estimation with panel data

In the EM algorithm above, we assumed access to the aggregate level sales transaction data (i.e.,

sales transaction data without access to the customer tags). The EM algorithm is updated in the

following way, if we have access to the individual-level sales transaction data with 𝑚 customers:

Initialization: we initialize the EM with a random allocation of individuals to one of the 𝐾

classes, resulting in an initial allocation 𝒟1,𝒟2, . . . ,𝒟𝐾 , which form a partition of the collection

of all the individuals. Then, we set 𝛾
(0)
ℎ = |𝒟ℎ|/(

∑︀𝐾
𝑑=1 |𝒟𝑑|). Next, ≻ (i.e., 𝜎) and 𝜃

(0)
ℎ𝑗 , for all

ℎ ∈ {1, ..., 𝐾}, 𝑎𝑗 ∈ 𝑁+ are obtained by solving the following optimization problem:

max
≻,𝜃ℎ

∑︁
𝑖∈𝒟ℎ

(︁
log 𝜃ℎ,𝑗𝑖𝑡 +

∑︁
𝑎𝑗∈𝑆𝑖𝑡:
𝑎𝑗≻𝑎𝑗𝑖𝑡

log(1− 𝜃ℎ𝑗)
)︁
,

which is solved by using the outer-approximation algorithm in Section 2.4.2.

E-step: we compute 𝑃
(𝑞)
ℎ𝑖 , which is the membership probability of every individual 𝑖 to belong

to the segment ℎ based on the parameter estimates {≻(𝑞−1),𝜃(𝑞−1),𝛾(𝑞−1)} and the purchasing
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transactions data (𝑎𝑗𝑖𝑡 , 𝑆𝑖𝑡)|𝑇𝑖
𝑡=1:

𝑃
(𝑞)
ℎ𝑖 =

𝛾
(𝑞−1)
ℎ

∏︀𝑇𝑖

𝑡=1

[︃
𝜃
(𝑞−1)
ℎ,𝑗𝑖𝑡

∏︀
𝑎𝑗∈𝑆𝑖𝑡:

𝑎𝑗 ≻(𝑞−1) 𝑎𝑗𝑖𝑡

(1− 𝜃(𝑞−1)
ℎ𝑗 )

]︃
∑︀𝐾

𝑟=1

[︃
𝛾
(𝑞−1)
𝑟

∏︀𝑇𝑖

𝑡=1

(︁
𝜃
(𝑞−1)
𝑟,𝑗𝑖𝑡

∏︀
𝑎𝑗∈𝑆𝑖𝑡:

𝑎𝑗 ≻(𝑞−1) 𝑎𝑗𝑖𝑡

(1− 𝜃(𝑞−1)
𝑟𝑗 )

)︁]︃ .

M-step: first, we update class membership probabilities for every segment ℎ ∈ {1, 2, ..., 𝐾}:

𝛾
(𝑞)
ℎ =

∑︀𝑚
𝑖=1 𝑃

(𝑞)
ℎ𝑖

𝑚
,

and then optimize the conditional expected value of the log-likelihood function, obtained in the

previous step, in terms of 𝜃 and ≻:

max
≻,𝜃

𝑚∑︁
𝑖=1

𝐾∑︁
ℎ=1

𝑃
(𝑞)
ℎ𝑖

𝑇𝑖∑︁
𝑡=1

log
(︁
𝜃ℎ,𝑗𝑖𝑡

∏︁
𝑎𝑗∈𝑆𝑖𝑡:
𝑎𝑗≻𝑎𝑗𝑖𝑡

(1− 𝜃ℎ𝑗)
)︁
,

which is solved using outer-approximation algorithm in Section 2.4.2.

EM algorithm heuristics

The EM algorithm, proposed above, might become computationally challenging for the large-

scale problems, as we need to run an outer-approximation algorithm for every 𝑞th iteration.

Alternatively, we might further assume that the preference order ≻𝜎 over items in the product

universe is known, e.g., we can rank the products according to their popularity in the sales

transaction data or we can estimate the ranking from calibrating single class ICC model (see

Section 2.3.1). In this case the “M” step for 𝑞th iteration in the EM algorithm reduces to solving

a globally concave maximization problem with a unique, closed form solution (i.e., we don’t need

to apply outer-approximation algorithm), given by

𝜃
(𝑞)
ℎ𝑗 =

∑︀𝑇
𝑡=1 𝑃

(𝑞)
ℎ𝑡 I[𝑎𝑗𝑡 = 𝑎𝑗]∑︀𝑇

𝑡=1 𝑃
(𝑞)
ℎ𝑡 I[𝑎𝑗𝑡 = 𝑎𝑗] +

∑︀𝑇
𝑡=1 𝑃

(𝑞)
ℎ𝑡 I[𝑎𝑗 ∈ 𝑆𝑡, 𝑎𝑗 ≻ 𝑎𝑗𝑡 ]

,
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which can be applied using aggregate level data (see Section 2.4.3), and

𝜃
(𝑞)
ℎ𝑗 =

∑︀𝑚
𝑖=1

∑︀𝑇𝑖

𝑡=1 𝑃
(𝑞)
ℎ𝑖 I[𝑎𝑗𝑖𝑡 = 𝑎𝑗]∑︀𝑚

𝑖=1

∑︀𝑇𝑖

𝑡=1 𝑃
(𝑞)
ℎ𝑖 I[𝑎𝑗𝑖𝑡 = 𝑎𝑗] +

∑︀𝑚
𝑖=1

∑︀𝑇𝑖

𝑡=1 𝑃
(𝑞)
ℎ𝑖 I[𝑎𝑗 ∈ 𝑆𝑖𝑡, 𝑎𝑗 ≻ 𝑎𝑗𝑖𝑡 ]

,

which can be applied if we have access to the panel data (see Section 2.4.3).

2.5 Conclusion

In this chapter, we propose a customer-centric method of identifying consideration sets from

sales transaction data. Motivated by behavioral and psychological aspects of customers, the vast

majority of existing papers focusing on consideration set definition impose a prior belief on the

consideration set formation (e.g., screening rules, trade-off between cost and expected benefit of

search, etc.). As opposed to this line of research, our approach is completely data-driven.

In the spirit of the consider-then-choose framework, we assume that customers make a pur-

chasing decision in two stages. First, a boundedly rational consumer, who suffers from limited at-

tention, forms her consideration/competition set, which is usually a small subset of substitutable

items in the product category, due to cognitive limitations. Secondly, a consumer evaluates all

products in her consideration set and purchases the one that is the most preferred. Focusing on

the fist stage of the choice process, we propose an effective means of modeling the consideration

set formation using existing machine learning methods. Although consideration sets are unob-

servable, our modeling approach allows us to infer the most likely subset of items considered by

each individual, depending on past purchasing transactions.
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Chapter 3

Robustness of Demand Prediction

Models in Operations

3.1 Introduction

Demand prediction is critical when optimizing prices and planning retail operations as well as

when matching supply and demand on online platforms. The fundamental unit of analysis un-

der this choice-based demand paradigm is the customer. In the context of retail, customers are

subjects creating product demand, and understanding the driving forces behind their decision-

making process allows us to build better demand models, and, hence, to make better operational

decisions. In the context of the sharing economy, where services are exchanged between pri-

vate individuals in online platforms, understanding customer preferences leads to more effective

matchings between parties. In pursuing such objective, accounting for the consideration set of

the consumers (i.e., the set of products really evaluated by consumers prior to making a choice)

is indeed a fundamental input. One of the intuitive properties of consideration set identification

is the fact that the exclusion of non-considered items from the offer set does not impact the

choice of customers. For this reason, choice-based demand models accounting for consideration

sets of customers might be more robust to the errors in offer set definitions.

Note that the classical discrete choice models [5, 59, 92] from Random Utility Maximization

(RUM) class, including the pioneering work of [64], imply that customers consider all products

available from the offer set. Without this simplifying assumption, models from the RUM class
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that attract major attention among scholars and practitioners (e.g., the multinomial logit (MNL),

nested logit (NL), and latent class logit (LC) models) become difficult to estimate. However, this

common assumption is acknowledged to be an overestimation of the cognitive burden exercised

by a customer when facing an assortment. Evidence suggests that customers’ limited attention

leads to the two-stage consider-then-choose process to purchase an item given limited physical

and cognitive abilities in considering the full offer set, no matter how noisy its definition is.

Under this framework, during the first stage they eliminate a few alternatives through a simple

screening rule, and then choose from the remaining options. Items that are ruled out during the

first step are clearly not going to be purchased. Instead, items from the consideration sets are

extensively evaluated by a customer based on their attributes.

The ability of consider-then-choose models to account for both customer preference and cog-

nitive limitation is essential in practice. First of all, identifying whether sales volume depends

mainly on the customer’s evaluation of the product or on the customer’s attention is important

for practitioners and might result into developing different business strategies to improve sales.

Secondly, explicitly accounting for the consideration set formation of customers, the consider-

then-choose types of models proposed in Chapter 2 are likely to be robust to the noise in sales

transactions data. It is a common practical issue that noise corrupts product availability data

(e.g., in retail settings, stockout events mask the true offer set information). Moreover, compa-

nies (e.g., retail companies and online platforms) need to make long-term demand predictions

in order to optimize strategic marketing decisions and to be successful in the long run. To this

end, the company can not rely on the accurate data regarding product availability over time in

the distant future. In this case, it is very important that choice models are robust to errors in

the offer set.

In this chapter, we evaluate the prediction performance of various choice-based demand mod-

els. Specifically, we showcase the robustness of consider-then-choose models to the noise in

offer set definitions under different real-world scenarios and noise regimes, using the modeling

framework proposed in Chapter 2. Overall, we make the following contributions:

∙ Numerical experiments: robustness to noise in offer sets. Because the consideration set

formation of customers is explicitly modeled in a consider-then-choose type of framework,

it is highly likely that its predictive performance is robust to the noise in the definition of
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the offer sets in comparison with their classical counterparts (e.g., MNL, LC-MNL). We

verify this proposal by explicitly incorporating the noise factor in synthetic sales transaction

datasets and by testing the predictive performance of choice models under different noise

scenarios.

∙ Empirical analysis: better demand predictions for the retail industry. We compare choice

models under several real-world scenarios in retail when we are likely to face significant

noise in offer set definitions. Our findings suggest that the relative performance of our

model as opposed to certain benchmarks improves once we switch to scenarios with higher

noise levels. We see only a moderate decrease in prediction accuracy when increasing noise

for consider-then-choose models.

∙ Empirical analysis: applications in the context of online platforms. We also analyze a

dataset obtained from an online car-sharing platform to provide additional evidence that

consider-then-choose models are generally robust to the noise in the offer set definition in

comparison to classical choice models. After modeling the consideration set formation of

customers with the linear-in-attributes utility, we demonstrated significant improvement

of the proposed models in terms of predictive performance. However, the flexibility of our

framework allows us to estimate the choice model with non-linear in product attributes

formation of consideration sets (e.g., decision trees or random forests). As a result, applying

a non-linear approach in consider-then-choose models gives us a further boost in prediction

performance. For example, after calibrating and testing models with the industry partner

dataset, we obtain that the random forest-based consider-then-choose model outperforms

the benchmark by 43.3% in terms of the MAPE score, and by 53.7% in terms of the RMSE

metrics.

3.2 Study based on the synthetic data: robustness to the

noise in offer sets

In this section, we describe the results of an extensive simulation study, the main purpose of

which is to demonstrate that choice models based on the consider-then-choose framework are
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more robust to the noise in offer sets than their classical counterparts. We consider the case

when the offer sets are not perfectly observed, and we focus our analysis on understanding when

the consider-then-choose type of models are better equipped to handle offer set noise than other

popular models in the literature, such as the MNL model.

To streamline the analysis of this simulation study, we consider the following setting. Suppose

that the ground truth model is the MNL choice model. Customers have perfect information on

the offer set 𝑆, and they consider all the items on offer. Given the offer 𝑆, the customer chooses

product 𝑎𝑗 with probability 𝑣𝑗/
(︀
1 +

∑︀
𝑎𝑖∈𝑆 𝑣𝑖

)︀
, where the parameter 𝑣𝑖 > 0 is the “weight” or the

attraction value corresponding to product 𝑎𝑖. The modeler observes customers choices, but does

not observe the offer set perfectly. In the presence of such noise, we compare the predictions of the

MNL model against ICC model to understand the conditions under which the one outperforms

the other.

In our setup, the benchmark MNL model does not suffer from model misspecfication – only

the noise in the offer sets. Our model, on the other hand, suffers from model misspecification. For

instance, it follows from Condition 1 in Propostion 2.2.5 that cannibalization is one directional

in our model, whereas it is bi-directional in the ground-truth model. Comparing the predictions

of our model to that of the benchmark MNL model should then allow us to quantify the effect

of offer set noise, because in the absence of nosie, the benchmark MNL model should provide

perfect predictions. The results, we obtain, can only be more favorable to our model when the

offer sets are noisy, unlike what we are assuming in the ground-truth model.

3.2.1 Synthetic data generation process

Let 𝛾 ∈ [0, 1] be the noise depth, such that each item in the product universe is exposed to the

noise with probability 𝛾, i.e., if 𝑛 is the number of items in the product universe then 𝛾𝑛 is the

average number of items that are exposed to the noise. Next, let 𝜂 be the noise intensity, such

that 𝜂 is the conditional probability of an item to be in the offer set as a noisy observation, given

that the item is exposed to the noise. The higher 𝛾 and 𝜂 the more noise is added to the dataset.

Deterministic utility values for items 𝑎𝑗 ∈ 𝑁 are randomly chosen from the interval [1, 2], i.e.,

𝑣𝑗 ∼ 𝑈 [1, 2], assigning 0 to the utility from the outside option. We assume that we have 𝑛 = 15

items in the product universe. Then, given the parameter values for 𝛾, 𝜂, and parameters 𝑣 of
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the MNL model, the data-simulation procedure consists of the following steps:

1. We randomly sample 100 offer sets, i.e., {𝑆𝑚}|100𝑚=1.

2. For each offer set 𝑆𝑚, we generate 10000 sales transactions according to the MNL model

with parameter values 𝑣.

3. We generate 100 sets {𝑆𝑚}|100𝑚=1, such that each set 𝑆𝑚 is obtained by tossing a coin for

each product 𝑎𝑗 ∈ 𝑁 and including it in 𝑆𝑚 with probability 𝛾.

4. We transform the sales transactions data by adding extra items with probability 𝜂, for

every offer set 𝑆𝑚, if these items belong to the 𝑆𝑚, i.e., we modify every offer set 𝑆𝑚 of

sales transactions data such that every item 𝑎𝑗 ∈ 𝑁 ∖ 𝑆𝑚 is added into the offer set with

probability 𝜂 if 𝑎𝑗 ∈ 𝑆𝑚. For instance, if 𝜂 = 0.5 and 𝑆 = 𝑁 then for every transaction,

characterized by the tuple (𝑎𝑗, 𝑆𝑚), we modify offer set 𝑆𝑚 by adding on average half of

the items from the subset 𝑁 ∖ 𝑆𝑚.

Using the procedure above, we generate both training and test synthetic datasets in order

to test the hypothesis that ICC choice model is rather robust to the noise in the offer sets in

comparison with the MNL model. We generate transaction data (i.e., both training and test

datasets) for 𝛾 ∈ {0.05, 0.1, ..., 1} and 𝜂 ∈ {0.1, 0.2, ..., 1}. This parametrization leads to 200

different scenarios. We simulated 100 different instances of the sales transaction data for each of

those scenarios.

3.2.2 Results and discussion

In Figure 3-1, we present the heatmap of the prediction scores under MNL model, where each

column corresponds to a particular noise intensity 𝜂 and each row corresponds to a particular

noise depth 𝛾. We focus on the MAPE and RMSE prediction scores in left and right panels,

respectively. Recall that MNL is the ground truth model for this simulation study. As expected,

MNL model captures the ground-truth choice probabilities almost exactly when 𝛾 = 0.05 and

𝜂 = 0.1, i.e., there is only a small amount of noise added to the sales transactions data. We

observe that MNL prediction scores increase with higher noise intensity for a given noise depth.

Interestingly, it can also be seen that MNL prediction scores are not monotonic with respect
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to the noise depth, i.e., the scores first increase with higher noise depth and then decrease. In

order to better explain the variation of prediction scores by the noise depth and noise intensity

variables, in Figure 3-1, we run the following linear regression:

𝑆𝑐𝑜𝑟𝑒𝑖𝑗 = 𝛽0 + 𝛽1 · 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖 + 𝛽2 · 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦2𝑖 + 𝛽3 · 𝐴𝑠𝑦𝑚𝑚𝑗 + 𝛽4 · 𝑆ℎ𝑎𝑟𝑒𝑑𝑗 + 𝜀𝑖𝑗, (3.1)

where 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖 is the noise intensity such that 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖 ∈ {0.1, 0.2, ..., 1}, 𝐴𝑠𝑦𝑚𝑚𝑗 is proba-

bility that an item in the product universe is exposed to noise only in the test data set or only in

the training dataset for 𝑗 ∈ {1, 2, ..., 20}, and 𝑆ℎ𝑎𝑟𝑒𝑑𝑗 is probability that an item in the product

universe is exposed to noise both in the test and training datasets for 𝑗 ∈ {1, 2, ..., 20}. Note

that 𝐴𝑠𝑦𝑚𝑚𝑗 = 𝛾𝑗(1 − 𝛾𝑗) + (1 − 𝛾𝑗)𝛾𝑗 = 2𝛾𝑗(1 − 𝛾𝑗) and 𝑆ℎ𝑎𝑟𝑒𝑑𝑗 = 𝛾2𝑗 , where 𝛾𝑗 is the noise

depth such that 𝛾𝑗 ∈ {0.05, 0.1, ..., 1}. The results for the regression (3.1) are reported in the last

column in Table 3.1. It follows from the Table 3.1 that noise intensity deteriorates the predictive

performance of the MNL model in non-linear way, with the coefficient for the linear term being

positive, and the coefficient for the quadratic term being negative. The variables 𝐴𝑠𝑦𝑚𝑚 and

𝑆ℎ𝑎𝑟𝑒𝑑 are positively correlated with the MAPE score, i.e., the prediction performance of the

MNL model worsens as the number of items in the product universe, which are exposed to the

noise, increases. Interestingly, the variable 𝐴𝑠𝑦𝑚𝑚 has more than seven times higher economic

significance than the variable 𝑆ℎ𝑎𝑟𝑒𝑑, which indicates that the benchmark (i.e, MNL model)

struggles the most in making accurate predictions when the impact of the noise is asymmetric

between the training and test sales transactions.1 Note that the independent variables in the

regression model (3.1) explain most of the variation in the MAPE score under the MNL model,

i.e., 𝑅2
𝑎𝑑𝑗 = 0.93.

In Figure 3-2, we present the heatmap of the prediction scores improvements under ICC model

versus MNL model, where each column corresponds to a particular noise intensity 𝜂 and each row

corresponds to a particular noise depth 𝛾. We focus on the MAPE and RMSE prediction scores

in left and right panels, respectively. Non-surprisingly, ground-truth MNL model significantly

outperforms ICC model when there is only a small amount of noise added to the sales transactions

data, e.g., 𝛾 = 0.05 and 𝜂 = 0.1. As expected, our model cannot capture the ground-truth choice

1Note that the highest noise asymmetry is achieved when 𝛾 is equal to 0.5. We have the worst performance
under MNL model for this level of the noise depth 𝛾, see Figure 3-1.
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Figure 3-1: Heatmap of the prediction scores under MNL model.

probabilities exactly because of model misspecification.

Figure 3-2 reveals that the improvement of ICC prediction scores over MNL are not monotonic

with respect to the noise depth (i.e., the scores first increase with higher noise depth and then

decrease) and noise intensity (i.e., the scores first increase with higher noise intensity and then

decrease). To better explain the variation of prediction improvements by the noise depth and

noise intensity variables, in Figure 3-2, we run the following linear regression which is similar to

the regression (3.1):

𝑆𝑐𝑜𝑟𝑒 𝐼𝑚𝑝𝑟𝑖𝑗 = 𝛽0 + 𝛽1 · 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖 + 𝛽2 · 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦2𝑖 + 𝛽3 ·𝐴𝑠𝑦𝑚𝑚𝑗 + 𝛽4 · 𝑆ℎ𝑎𝑟𝑒𝑑𝑗 + 𝜀𝑖𝑗. (3.2)

The results for the regression (3.2) are presented in the last column in Table 3.2. It follows from

the table that the improvement of ICC model over MNL increases with noise intensity non-linearly

such that the coefficients for the linear and squared terms are positive and negative, respectively.

Moreover, the improvement is positively correlated with number of items in the product universe

that are exposed to the noise. Since the coefficient corresponding to the variable 𝐴𝑠𝑦𝑚𝑚 is more

than twice higher than the coefficient corresponding to the variable 𝑆ℎ𝑎𝑟𝑒𝑑, we conclude that

ICC model has a higher chance to outperform the benchmark in scenarios when the sets of items

that are exposed to the noise in training and test datasets do not intersect. Note that in some

of the real world scenarios, we are likely to have more noise in the hold-out sample than in the

training dataset. Results in this section are robust to these scenarios as well (see Figure 3-3).
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Model (1) Model (2) Model (3) Model (4) Model (5)
Score Score Score Score Score

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 27.336*** 42.079***
(17.997) (14.246)

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦2 22.929*** -13.403***
(15.755) (-5.122)

𝐴𝑠𝑦𝑚𝑚 34.662*** 39.320***
(8.677) (28.338)

𝑆ℎ𝑎𝑟𝑒𝑑 -2.590 5.385***
(-1.143) (8.015)

𝑐𝑜𝑛𝑠𝑡 6.260*** 12.467*** 9.770*** 22.224*** -11.694***
(6.643) (17.021) (6.698) (20.645) (-12.579)

No. Observations: 200 200 200 200 200
R-squared: 0.621 0.556 0.275 0.007 0.929
Adj. R-squared: 0.619 0.554 0.272 0.002 0.928

t statistics in parentheses
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01

Table 3.1: Regression models where the dependent variable is the MAPE score under the MNL
model.

Interestingly, it can be inferred form Tables 3.1 and 3.2 that the dependent variables (i.e.,

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, 𝐴𝑠𝑦𝑚𝑚, and 𝑆ℎ𝑎𝑟𝑒𝑑) impact the improvement of ICC over MNL in the same way,

qualitatively, as they impact the MNL prediction scores. As a result, it can be stated that the

ability of ICC model to outperform MNL model is higher in scenarios when MNL model struggles

to provide accurate predictions.

3.3 Empirical study on the IRI academic dataset

In the real world settings, noise is likely to result in an estimate of the offer set that is a superset

of the true offer set. This type of noise implies that we may not know the offer set exactly, but

we can always come up with a superset of the true offer set. In fact, this is true in retail settings,

where stock out events mask the true offer set information.

In this section, we compare the predictive power of GCC, ICC, and the latent-class MNL

(LC-MNL) benchmark models based on the household purchase panel and store data from the

IRI Academic Dataset [12] under different real-world scenarios. This panel dataset keeps track
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Figure 3-2: Heatmap of the prediction scores improvements under ICC model versus MNL.

of the household purchase histories for grocery and drug store chains, collected from 47 markets

across the US over the years 2001-2011. Note that we calibrate GCC model by applying the

EM algorithm with panel data, where we rank items in the product universe according to their

popularity in the sales transaction data for every category (see Section 2.4.3 for details).

Overall, the main purpose of this empirical study is threefold: (a) provide various real-world

scenarios based on the IRI dataset when we are likely to face a lot of noise in the offer set

definitions while making the long-term demand predictions; (b) investigate the prediction per-

formance of choice models under different noise regimes, e.g., quantify the improvement of GCC

over LC-MNL under several real-world scenarios with various noise intensities; and (c) compare

GCC model to ICC model, which is a restricted version of the GCC model.

According to the empirical study, the improvement of GCC versus MNL increases as we add

more noise to the dataset. In other words the predictive performance of GCC model is robust to

the noise in the sales transaction data in comparison with the classical LC-MNL choice model.

We also find that GCC model significantly outperforms ICC model in prediction performance.

3.3.1 Data analysis

The dataset consists of weekly sales transactions. We analyze a total of 20 categories, presented

in Table 3.3. We focus on sales transactions data from calendar year 2007. For every store visit,

we are given the following information: the Universal Product Code (UPC) and price of the
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Model (1) Model (2) Model (3) Model (4) Model (5)
Impr. Impr. Impr. Impr. Impr.

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 4.162*** 16.621***
(7.883) (17.214)

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦2 3.025*** -11.327***
(6.157) (-13.241)

𝐴𝑠𝑦𝑚𝑚 7.311*** 11.530***
(7.112) (25.421)

𝑆ℎ𝑎𝑟𝑒𝑑 2.539*** 4.878***
(4.811) (22.207)

𝑐𝑜𝑛𝑠𝑡 -2.966*** -1.842*** -3.108*** -1.588*** -11.042***
(-9.055) (-7.449) (-8.281) (-6.332) (-36.333)

No. Observations: 200 200 200 200 200
R-squared: 0.239 0.161 0.203 0.105 0.874
Adj. R-squared: 0.235 0.156 0.199 0.100 0.871

t statistics in parentheses
* 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01

Table 3.2: Regression models where the dependent variable is the MAPE score improvement of
the ICC model over the MNL model.

purchased item, a binary indicator if the product is on price or display promotion, the purchased

quantity, the customer id, the store id, and the week when the purchase was made. Since we are

not given the explicit information about the subset of items offered to each individual upon her

store visit, we construct this subset by aggregating all of the transactions made in a particular

store withing a given category during a particular week. We aggregate items with the same

vendor code into a single product since we cannot work directly with each UPC because of data

sparsity. We divide the sales transaction data into two parts: the training data, which consists

of the first 26 weeks of the sales observations, and the test data, which consists of the last 26

weeks of the sales observations.

3.3.2 Results and discussion

We stress test the demand prediction models based on the IRI dataset under different scenarios

in the retail setting. Overall, we focus on three scenarios:

1. No extra noise. We assume that the retailer has an accurate information on the product
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Figure 3-3: Heatmap of the prediction scores improvements under ICC model versus MNL. Noise
depth in the training dataset is 10% lower than in the test dataset.

assortments. To this end, we make predictions by feeding the models with accurate offer

sets, which are obtained from the test dataset.

2. Store-based noise. In order to be successful in major strategic and investment decisions, a

retail company needs an accurate long-term demand forecasting. In this case, the robust-

ness of the demand prediction models to the noise in offer sets is very crucial, as retailers

usually do not have accurate information on product stockouts in the distant future. To

this end, we assume that a store manager makes demand predictions given the overall as-

sortment of products in their store. We obtain the product assortments for each store by

taking the union of all the offer sets over the test data. We model this scenario by feeding

the prediction models with the estimated product assortments for every store.

3. Week-based noise. Another scenario is when the warehouse of the retail chain distributes

products to the stores and makes centralized decisions on the inventory level in the ware-

house. In this case, the warehouse is likely to make predictions on the centralized level,

without knowing the up-to-date information on product assortments in every store. In-

stead, the warehouse might know the estimate of the product assortments across all the

stores over a specified time period. We model this scenario by feeding the prediction mod-

els with the union of product assortments over all the stores in the retail chain on weekly

basis.

137



www.manaraa.com

Category Shorthand Expanded Name # vend OS size # cust. # trans.

1 blades Blades 10 4.18 703 1084

2 cigets Cigarettes 18 7.14 452 2343

3 coffee Coffee 73 19.80 3101 11526

4 coldcer Cold cereal 45 17.66 4438 26701

5 deod Deodorant 36 14.55 1345 2383

6 diapers Diapers 8 3.30 337 919

7 fzpizza Frozen pizza 47 15.50 3460 13431

8 hotdog Hot dogs 44 16.81 3318 8886

9 laundet Laundry detergent 24 10.08 3196 8698

10 margbutr Margarine/Butter 19 10.35 3474 14596

11 mayo Mayonnaise 19 6.86 3761 8676

12 mustketc Mustard 60 17.07 3728 9238

13 peanbutr Peanut butter 25 7.99 3153 8059

14 shamp Shampoo 81 18.74 1466 2884

15 spagsauc Spaghetti/Italian sauce 74 17.85 3473 11879

16 sugarsub Sugar substitutes 17 5.05 750 1406

17 toitisu Toilet tissue 13 7.66 3760 14411

18 toothbr Toothbrushes 52 15.86 1115 1810

19 toothpa Toothpaste 38 12.05 2110 4482

20 yogurt Yogurt 32 9.84 3766 24096

Table 3.3: Summary statistics of the data used in IRI case study.

In Figure 3-4, we present scatter plots of the improvements of GCC model versus LC-MNL

model across 20 product categories, under three scenarios discussed above: (1) no extra noise

added, represented by green pluses; (2) store-based noise added, represented by blue crosses; and

(3) week-based noise added, represented by red dots. In the left and right panels, we measure

the predictive performance of the models based on the MAPE and RMSE metrics, respectively.

We observe that GCC outperforms LC-MNL for around half of product categories even under

the first scenario (i.e., no extra noise is added to the sales transaction data) and for almost all

product categories under the second and third scenarios. Note that we have red dots located

to the right of green pluses with blue crosses being in between, under both MAPE and RMSE

scores and across most of the product categories. It reveals that the improvement of GCC over

LC-MNL across product categories increases when we switch to the noisy regimes.

Then, Figure 3-5 exhibits MAPE (see left panel) and RMSE (see right panel) scores of GCC

and LC-MNL models, averaging across 20 product categories, for three different noise regimes.

We observe that the performance of the LC-MNL model deteriorates once we shift from the “no
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Figure 3-4: Scatter plots of the prediction score improvements of GCC model over LC-MNL.

extra noise” to the “store-based noise” and “week-based noise” scenarios. On the other hand,

the predictive performance of the GCC model only moderately decreases once we switch to the

noisy regimes, i.e., the performance stays rather flat for all three noise regimes. From the panels

in Figure 3-5, we observe that the improvements of GCC over LC-MNL are -5.6% (-0.027%),

3.7% (0.061%), and 68.4% (0.973%) under the first, second, and third noise regimes, respectively,

based on the MAPE (RMSE) score.

We notice that the improvement of GCC over MNL, in Figure 3-4, varies across product

categories for a given noise regime. To better explain this variation, we regress the improvement

of GCC over LC-MNL for each category against the noise intensity. We measure the noise
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Figure 3-5: The average prediction scores under GCC and LC-MNL choice models.

intensity in the following way:

noise intensity =
1

𝑇

𝑇∑︁
𝑡=1

|𝑆| − |𝑆|
|𝑆|

,

where 𝑆 is the offer set from the actual sales transactions data and 𝑆 is a noisy offer set. Intu-

itively, the noise intensity under “store-based noise” scenario is equal to the average percentage

of the items that are stocked out in a store for a given category. The noise intensity under

“week-based noise” scenario is equal to the average percentage of the items that are available

in a store over the total assortment of items that are available in the retail chain for a given

week. The left and right panels in Figure 3-6 illustrate the regression under “store-based noise”

and “week-based noise” regimes, respectively. We see a clear positive correlation between the

improvement of GCC over MNL and noise intensity in both panels, which suggests that the

improvement becomes more significant with higher noise intensity in the product category.

In Figure 3-7, we compare the prediction performance of GCC against ICC model based on

the MAPE score across 20 product categories. We observe that the relative improvement of GCC

model over ICC is 18.5%, 18.1%, and 8.9% under the first, second, and third noise scenarios,

respectively, on average, across 20 product categories.

We emphasize two major findings here. First, we observe that the relative predictive per-

formance of GCC over LC-MNL improves with the noise added to the dataset. This finding is
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Figure 3-6: Scatter plots and liner regressions of the MAPE score improvement of ICC (vs. MNL
model) over the noise intensity.

consistent with the analysis in Section 3.2 based on the synthetic dataset. Moreover, the im-

provements vary significantly across product categories and noise regimes. Second, we find that

GCC significantly outperforms the ICC model in terms of the prediction performance as it can

better capture heterogeneity of customer preferences. Overall, our main observation is that the

predictive performance of GCC model is rather robust to the noise in the sales transaction data

in comparison with standard LC-MNL model.

3.4 Case study on the car-sharing dataset: prediction

analysis

In this section, we first provide some background information on our industry partner. Then,

we describe the data and present modeling assumptions. We incorporate the product feature

information into the choice models in order to gain insights about the consideration set formation.

Then, we calibrate different variations of consider-then-choose and benchmark models, using

online platform data, and compare their predictive performance.
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Figure 3-7: Scatter plots of the MAPE scores under the GCC vs. ICC models.

3.4.1 Industry partner and data analysis

We provide a brief overview of our industry partner, an online peer-to-peer car-sharing service

that enables drivers to rent cars from private car owners, and owners to rent out their cars.

The company offers its users a smartphone application to match car owners with renters on-

demand. Car owners can use the application to list their vehicles by posting the picture of the

vehicle and providing its detailed characteristics. In addition, car owners set the availability of

their cars, hourly or daily prices, and potential conditions for sharing it. Every listed car has a

device installed into it so that the renters are able to locate and unlock cars through the same

application. As a car renter, the user of the platform can easily search for the cars nearby and

book the available alternative by entering the license number and credit card information.

For the empirical analysis in this section, we use a historical dataset, which includes a sample

of the rentals completed in a major US city over a period of two years. Each observation in the

dataset is a rental (i.e., a renter who books the listed car from a particular location given the set

of available alternatives on a specific day/time). Our dataset includes 26.8K rentals from around

five hundred car providers. For each rental, we have access to several observable features, such

as car owner ID, hourly rental price, car access (i.e., open or closed), car location hours (i.e., 24

hours or restricted), car location type (i.e., garage, street, surface lot, or valet), car brand (e.g,

BMW, Tesla, MINI), car types (i.e., economy, standard, fullsize, SUV, trucks, luxury), car age,

and some other various binary car features such as transmission, premium wheels, power seats,

bluetooth/wireless, leather interior, sunroof/moonroof, premium sound, power windows, GPS
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navigation system, roof rack, tinted windows. In Section 3.5.1, we examine the extent to which

various features, specified above (e.g., hourly rental price), impact the consideration/competition

set structure of renters. A detailed summary of the data is provided in Table 3.4.

3.4.2 Modeling assumptions

Our modeling assumptions are motivated by the desire to strike a balance between the flexibility

of the feature-based consider-then-choose models and their tractability. In principle, we use

a semiparametric approach in order to calibrate these two-stage models. In the first stage, the

renters form their consideration set and we represent their utilities from considering a car 𝑎𝑗 with

linear-in-parameters function 𝑢𝑗, i.e., 𝑢𝑗 = 𝛽𝑇𝑥𝑗 + 𝜀𝑗, or using non-linear methods from machine

learning, e.g., decision trees or random forests. Then, we assume that during the second stage

the renter chooses the most preferred car, among the considered ones, according to the preference

order 𝜎 over the universe of car alternatives. Modeling the second stage choice process this way,

we do not parameterize the ranking 𝜎 which implies that the cars are assumed to have the same

attributes over time. However, according to our dataset, this assumption is justified (see Section

3.5.2 for the details).

Note that the dataset consists of the rental request observations such that for every trans-

action we know which car was reserved and we can infer the set of available cars, listed in the

online platform at the time of the request, with their characteristics. The offer sets are approx-

imately built by aggregating all of the listed and available cars within 0.3 miles distance form

the location of the car, which was in fact rented. In general, in order to calibrate feature-based

consider-then-choose models (e.g., GCC model) with our dataset, we need to estimate two types

of parameters: the ranking 𝜎 over all the cars (i.e., in total 514 cars) listed in the online platform

and parameters associated with consideration set formation of renters. In order to simplify the

estimation procedure for this case study, we assume that the ranking 𝜎 is known a priori. Specif-

ically, the cars are ranked according to their popularity among renters, defined as the number of

times the vehicle was rented.
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Mean Std. Min Max
Brands

Acura 2.52% 15.68% 0% 100%
Audi 4.54% 20.82% 0% 100%
BMW 11.73% 32.18% 0% 100%
Buick 0.21% 4.61% 0% 100%
Chevrolet 0.79% 8.84% 0% 100%
Chrysler 0.41% 6.37% 0% 100%
Dodge 0.82% 9% 0% 100%
Fiat 0.9% 9.42% 0% 100%
Ford 2.63% 16.01% 0% 100%
Honda 16.77% 37.36% 0% 100%
Hyundai 3.42% 18.16% 0% 100%
Infiniti 0.21% 4.61% 0% 100%
Jeep 0.41% 6.39% 0% 100%
Kia 0.49% 6.95% 0% 100%
Land Rover 0.17% 4.14% 0% 100%
Lexus 1.24% 11.06% 0% 100%
Mazda 3.44% 18.22% 0% 100%
Mercedes Benz 3.73% 18.95% 0% 100%
Mercury 0.07% 2.59% 0% 100%
Mini 7.66% 26.59% 0% 100%
Mitsubishi 0.68% 8.21% 0% 100%
Nissan 4.05% 19.71% 0% 100%
Pontiac 0.21% 4.57% 0% 100%
Porsche 1.5% 12.14% 0% 100%
Saab 0.03% 1.73% 0% 100%
Saturn 0.28% 5.25% 0% 100%
Scion 0.62% 7.85% 0% 100%
Subaru 3.71% 18.89% 0% 100%
Suzuki 0.53% 7.29% 0% 100%
Smart 5.44% 22.69% 0% 100%
Tesla 1.42% 11.83% 0% 100%
Toyota 10.33% 30.43% 0% 100%
Volkswagen 7.54% 26.41% 0% 100%
Volvo 1.53% 12.28% 0% 100%

Car types
Economy 14.83% 35.54% 0% 100%
Standard 48.83% 49.99% 0% 100%
Fullsize 19.56% 39.67% 0% 100%
SUV 9.41% 29.2% 0% 100%
Trucks 3.31% 17.88% 0% 100%
Luxury 4.06% 19.74% 0% 100%

Car location type and accessibility
Car access [open] 81.89% 38.51% 0% 100%
Car access hours [all hours] 93.52% 24.61% 0% 100%
Car location type [garage] 28.50% 45.14% 0% 100%
Car location type [street] 23.86% 42.62% 0% 100%
Car location type [surface lot] 43.85% 49.62% 0% 100%
Car location type [valet] 0.24% 4.84% 0% 100%

Car features
Price (per hour) 8.63 4.61 2.0 300.0
Car age 5.32 3.18 -0.3 18.3
Transmission [automatic] 95.21% 21.35% 0% 100%
Premium wheels 29.38% 45.55% 0% 100%
Power seats 46.88% 49.90% 0% 100%
Bluetooth/wireless 33.74% 47.28% 0% 100%
Leather interior 53.56% 49.87% 0% 100%
Sunroof/moonroof 53.48% 49.88% 0% 100%
Premium sound 46.25% 49.86% 0% 100%
Power windows 92.90% 25.68% 0% 100%
GPS navigation system 23.05% 42.11% 0% 100%
Roof rack 6.98% 25.48% 0% 100%
Tinted windows 13.24% 33.89% 0% 100%

Table 3.4: Descriptive statistics, the car-sharing dataset.
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Additional descriptive statistics:
Number of rentals 26791
Number of car owners 514
Number of available alternatives (within 0.3 mile) 5.7
Rental duration (days) 0.62
Rental request in advance (days) 1.24
Price CV (averaging over car owners) 0.053
Average number of price modes 2.33
The most frequent price (percentage) 0.78
The second most frequent price (percentage) 0.16
Average number of car access modes 1.07
The most frequent car access (percentage) 0.99
Average number of car access hours modes 1.03
The most frequent car access hours (percentage) 0.99
Average number of car location type modes 1.10
The most frequent car location type (percentage) 0.98

Table 3.5: Additional descriptive statistics, the car-sharing dataset.

3.4.3 Feature-based predictive accuracy results

Next, we conduct an out-of-sample prediction testing of the models to quantify the predictive

performance of consider-then-choose models versus the benchmark while taking into account the

car attributes. We split the dataset into two parts: the first 80%, in-sample, rental observa-

tions, and the remaining 20%, out of sample transactions. Overall, we compare the predictive

performance of the LC-MNL benchmark with three variants of our model class: GCC, Decision

Tree-based CC (DT-CC), and Random Forest-based CC (RF-CC), on the accuracy of two pre-

diction measures: MAPE and RMSE (see Section 2.3.4), where lower scores stand for better

prediction.

The peer-to-peer car-sharing platform can calibrate the choice-based models to make demand

predictions using the training dataset, which consists of car rentals with each rental observation

being a tuple (𝑎𝑗𝑡, 𝑆𝑡), where 𝑎𝑗𝑡 is the chosen car and 𝑆𝑡 is the set of cars available at the

reservation time 𝑡. In order to optimize strategic and marketing decisions, the online platform

need to make long-term (or medium-term) demand forecasts for the cars listed on the online

application. In the real world settings, the company can not rely on the accurate data on car

availabilities over time in the distant future, i.e., we can not test prediction power of choice models

by using the offer sets from the test dataset described above. Instead, the company might divide

the city into several geographical areas and make predictions based on the aggregate assortment

of cars listed in each area. For our case study, we divide the city in 42 equal-spaced areas and

estimate the assortments of cars by taking the superset of all the cars on offer at each area in
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Figure 3-8: Prediction results under Consider-then-Choose (CC) and LC-MNL models with car
features.

the hold-out data sample.

In Figure 3-8, we present the prediction performance results of the models based on MAPE

and RMSE scores in the left and right panels, respectively, averaged across car brands. The

MAPE score of consider-then-choose models exhibit an improvement of 16.7%, 23.4%, and

43.3%(RF-CC) over LC-MNL for GCC, DT-CC, and RF-CC models, respectively. We also

observe that our model combinations obtain improvements of 6.2%, 10.9%, and 53.7% over LC-

MNL for GCC, DT-CC, and RF-CC models, respectively, based on RMSE metrics.

Figure 3-9 exhibits the MAPE scores computed for every brand separately under the RF-

CC and LC-MNL models, where the brands are ordered according to their popularity (i.e.,

percentage of the total number of reservations coming from every brand), e.g., Honda is the

most popular brand while Mercury is the least popular brand in the dataset. The panels in

Figure 3-9 illustrate that MAPE scores vary significantly across brands both for RF-CC and

LC-MNL models. To analyze this variation, in the Figure 3-10, we regressed the improvement of

RF-CC versus LC-MNL against the popularity of brands and MAPE score of LC-MNL model.

We observe a clear positive correlation between MAPE score improvements and popularity of

brands, which indicates that we can better predict the demand for more popular brands. We

can also see a clear positive correlation between the improvements and MAPE score under LC-

MNL model, which allows us to conclude that consider-then-choose type of models are especially

relevant in prediction tasks (i.e., CC models dominate LC-MNL) when LC-MNL model provides a
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Figure 3-9: MAPE scores of car brands.

relatively bad prediction performance. To this end, the LC-MNL model provides a relatively bad

prediction for the brands that are influenced by the noisy observations the most. Being robust to

the noise, consider-then-choose models provide significantly better predictive performance under

these circumstances. Note that these insights are consistent with our numerical study based on

the synthetic dataset in Section 3.2.

The results above indicate that consider-then-choose models forecast customers’ choices con-

siderably better than the traditional LC-MNL model under both prediction scores. First of all,

accounting for the consideration set formation with the linear-in-parameters GCC model with

logistically distributed error term, we can better predict the choices of customers. This improve-

ment can be attributed to the effectiveness of consider-then-choose models to alleviate the noise

impact on the offer set definition from sales transaction data. Moreover, we can further boost
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Figure 3-10: Scatter plot and linear regression of the percentage improvement of RF-CC versus
LC-MNL over brand popularity and LC-MNL prediction accuracy.

the predictive performance of the two-stage models by modeling the consideration set formation

in a non-linear-in-parameters way, with decision trees or random forests. We take it as a strong

supportive evidence for the validity of inferring consideration sets from transaction data with

consider-then-choose models. After calibrating DT-CC and RF-CC models we can get some

insights of how customers form their consideration sets. In particular, Figure 3-11 illustrates an

instance of the decision tree obtained after fitting the DT-CC model.

3.5 Case study on the car-sharing dataset: explanatory

analysis

In this section, we calibrate Logistic-based Consider-then-Choose (L-CC) and MNL models,

accounting for car features, and discuss the modeling assumptions. We also provide explanatory

analysis of choice models in order to gain insights about the consideration set formation of

renters using the car feature information. In addition, we address the problem of a potential

price endogeneity in our empirical explanatory analysis. We argue that, in our setting, we are

unlikely to have any price endogeneity problems while calibrating the models.
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Figure 3-11: Decision tree for consideration set formation of the renters based on the car-sharing
dataset.

3.5.1 Explanatory analysis

We start this section by calibrating the L-CC model with features to examine the extent to

which various variables impact the consideration/competition set structure. Assuming that the

cars are ranked according to their popularity among renters (see Section 3.4.2), the problem of

fitting L-CC model is the one of estimating the coefficients 𝛽. The car features available to

the renters through the online platform are divided into three groups: (1) car brand; (2) car

location type and accessibility: car access (i.e., open or closed), car location hours (i.e., 24 hours

or restricted), car location type (i.e., garage, street, surface lot, or valet); (3a) car type (i.e.,

economy, standard, fullsize, SUV, trucks, luxury); and (3b) car features: hourly price, car age,

and some other various binary car features such as transmission, premium wheels, power seats,

bluetooth/wireless, leather interior, sunroof/moonroof, premium sound, power windows, GPS

navigation system, roof rack, tinted windows. Assuming that the error terms 𝜀𝑗 are logistically

distributed, we estimate the 𝛽 vector using logistic regression analysis.

149



www.manaraa.com

The results for the L-CC model appear in the first column of Table 3.6. In the middle

column, the table lists the average marginal effects (AME) of the L-CC model when all the

covariates are at their mean. Then, we also calibrate the usual linear-in-parameters MNL model

where the utility from reserving the car alternative 𝑗 is represented with-linear-in parameters

function 𝑈𝑗, i.e., 𝑈𝑗 = 𝛽𝑇𝑥𝑗 + 𝜀𝑗. On the right, the Table 3.6 presents the estimates of the

MNL model parameters. However, the interpretation of the 𝛽 vector for L-CC and MNL models

is different. The parameters of the L-CC model, listed in the left column of Table 3.6, show

the estimated impact of exogenously imposed changes in car features on the consideration set

formation. Rather, the parameters of the MNL model in the right column of Table 3.6 show the

influence of car features on the customer’s choices, i.e., revealed preferences. Notably, quite a

few coefficients estimated based on L-CC and MNL models are not aligned, i.e., the covariates

that increase (or decrease) the likelihood of considering the car under L-CC model might not

necessarily increase (or decrease) the likelihood of booking the car under the MNL model, e.g.,

the utility of the renter from considering the car brand Jeep is higher by 0.98 (𝑡 = 4.9, 𝑝 < 0.01)

than the utility from considering the baseline brands while the utility of the renter from reserving

the same brand under the MNL model is lower by 0.93 (𝑡 = -6.2, 𝑝 < 0.01) than the utility

from reserving baseline brands. Also, some of the covariates that are statistically significant in

explaining the choice of renters under MNL model might be statistically insignificant under L-CC

model, e.g., the utility from choosing a car parked in the street is lower (𝑡 = -8.33, 𝑝 < 0.01) than

the utility from choosing the car located in the valet parking area while the discrepancy between

these two parking location types are insignificant (𝑡 = 1.36, 𝑝 > 0.10) under the L-CC model.

The price and the car age coefficients are statistically significant and negative for both L-CC

and MNL models. However, the impact of additional $1 increase in the car hourly rental price

on the utility from considering the vehicle is equivalent to the car being 0.52 years older, while

the impact of additional $1 increase in the car hourly rental price on the utility from booking

the vehicle under the MNL model is equivalent to the car being 3.75 years older. According

to these findings, the car age plays relatively more important role during the formation of the

consideration set in the L-CC model compared to its role in the choice process under the MNL

model.

Next, we consider three types of car attributes (i.e., car brand, car location type and acces-
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sibility, and car type and features), with the objective of empirically verifying their impact on

the consideration set formation under the L-CC model and on the choice probabilities under the

MNL model. According to Table 3.7, the car type and features attributes are more statistically

significant than car brand attributes under the L-CC model, whereas the opposite effect takes

place under the MNL model. These findings are robust to the various measures of statistical

significance and goodness-of-fit presented in Table 3.7 such as LL, AIC, BIC, Likelihood Ration

(LR) statistics, and Wald statistics. Overall, it is implied that car location type and accessibility

play the least important role both for the consideration set formation and for the final choice

decision. However, the renters are likely to build their consideration sets based on car brands

rather than on car properties, even though while evaluating alternatives regarding their overall

choice, customers are likely to pay more attention on the car properties rather than the car

brands.

3.5.2 Discussion of model estimation assumptions

In this section, we further discuss the assumptions imposed by the CC models with features that

we take into account when calibrating the models. And then, we also address the problem of a

potential price endogeneity in our empirical explanatory analysis. We argue that, in our setting,

we are unlikely to have any price endogeneity problems estimating the models.

Semiparametric approach

Using the semiparametric approach in order to calibrate the two stage CC model, we assume

that renters form their consideration set taking into account car features. Then, we assume

that, during the second stage, renters choose the most preferred car among the considered ones

according to the preference order 𝜎 over the universe of car alternatives. Modeling the second

stage choice process this way, we do not parameterize the ranking 𝜎 which implies that the cars

are assumed to have the same attributes over time. In this subsection, we justify this assumption

based on our dataset.

We start by analyzing the variation of the hourly price parameter over car alternatives. In

Table 3.5, we report that the average coefficient of variation (CV) of the hourly price across all the
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L-CC AME (L-CC) MNL
Coeff. Std.err. Coeff. Std. err. Coeff. Std. err.

Brands
Acura 0.29** 0.10 0.067** 0.024 -0.33*** 0.094
Audi -0.11 0.097 -0.025 0.023 0.22* 0.088
BMW 0.0061 0.089 0.0014 0.021 0.14 0.083
Chrysler -0.19 0.15 -0.044 0.035 -1.24*** 0.13
Dodge 0.21 0.12 0.048 0.029 -0.0095 0.11
Fiat 1.01*** 0.15 0.24*** 0.035 -0.030 0.11
Ford -0.50*** 0.095 -0.12*** 0.022 0.055 0.087
Honda 0.13 0.086 0.029 0.020 0.0011 0.079
Hyundai 0.010 0.094 0.0024 0.022 -0.064 0.085
Infiniti 0.21 0.25 0.049 0.059 0.30 0.24
Jeep 0.98*** 0.20 0.23*** 0.047 -0.93*** 0.15
Kia 0.36* 0.15 0.085* 0.035 -0.47*** 0.13
Land Rover 1.01*** 0.25 0.24*** 0.058 0.74*** 0.20
Lexus 0.043 0.11 0.0100 0.027 0.20 0.11
Mazda 0.27** 0.098 0.063** 0.023 0.070 0.089
Mercedes Benz -0.32** 0.100 -0.074** 0.023 0.20* 0.090
Mercury 2.53*** 0.75 0.59*** 0.18 -0.064 0.29
Mini 0.37*** 0.094 0.086*** 0.022 0.23** 0.086
Mitsubishi -0.37** 0.13 -0.087** 0.030 -0.51*** 0.12
Nissan 0.39*** 0.094 0.090*** 0.022 0.11 0.085
Pontiac 0.87*** 0.23 0.20*** 0.054 0.54** 0.18
Porsche -0.24* 0.11 -0.057* 0.027 0.45*** 0.11
Scion 0.74*** 0.17 0.17*** 0.039 -0.67*** 0.14
Subaru 0.32*** 0.096 0.075*** 0.023 0.43*** 0.084
Suzuki -0.071 0.15 -0.017 0.036 0.47** 0.16
Smart -0.15 0.096 -0.036 0.022 0.090 0.084
Tesla 1.29*** 0.16 0.30*** 0.038 3.24*** 0.15
Toyota 0.27** 0.089 0.063** 0.021 0.13 0.080
Volkswagen 0.26** 0.091 0.061** 0.021 0.46*** 0.084
Volvo 1.26*** 0.13 0.29*** 0.029 0.26* 0.11
Baseline brands Baseline Baseline Baseline

Car types
Economy 0.36*** 0.068 0.084*** 0.016 -0.28*** 0.055
Standard 0.29*** 0.060 0.068*** 0.014 -0.13** 0.050
Fullsize 0.34*** 0.066 0.079*** 0.015 -0.36*** 0.054
SUV 0.055 0.070 0.013 0.016 -0.43*** 0.057
Luxury 0.37*** 0.083 0.087*** 0.019 -0.19** 0.070
Trucks Baseline Baseline Baseline

Car location type and accessibility
Car access [open] -0.36*** 0.029 -0.084*** 0.0067 0.029 0.026
Car access hours [all hours] -0.089* 0.045 -0.021* 0.010 -0.097* 0.038
Car location type [garage] -0.24*** 0.061 -0.057*** 0.014 0.13* 0.052
Car location type [street] 0.080 0.059 0.019 0.014 -0.40*** 0.048
Car location type [surface lot] -0.19*** 0.057 -0.044*** 0.013 0.27*** 0.048
Car location type [valet] Baseline Baseline Baseline

Car features
Price (per hour) -0.022*** 0.0033 -0.0051*** 0.00077 -0.12*** 0.0042
Car age -0.042*** 0.0039 -0.0099*** 0.00091 -0.032*** 0.0033
Transmission [automatic] 0.34*** 0.046 0.080*** 0.011 0.45*** 0.037
Premium wheels -0.0025 0.025 -0.00059 0.0058 -0.18*** 0.021
Power seats -0.21*** 0.024 -0.048*** 0.0055 0.043* 0.021
Bluetooth/wireless -0.13*** 0.025 -0.031*** 0.0059 -0.29*** 0.021
Leather interior 0.087** 0.030 0.020** 0.0070 0.12*** 0.025
Sunroof/moonroof 0.0011 0.027 0.00026 0.0064 0.14*** 0.024
Premium sound 0.25*** 0.027 0.059*** 0.0063 -0.14*** 0.022
Power windows -0.0058 0.042 -0.0013 0.0099 0.40*** 0.036
GPS navigation system -0.085** 0.029 -0.020** 0.0067 0.18*** 0.023
Roof rack 0.16*** 0.046 0.036*** 0.011 -0.26*** 0.037
Tinted windows -0.087** 0.030 -0.020** 0.0070 -0.30*** 0.026

Constant -0.13 0.15
No. of obs. 26791 26791 26791
AIC 76980.3 69788.7
BIC 77464.8 70309.2
Log likelihood -38436.1 -34841.4
Pseudo 𝑅2 square 0.024

* 𝑝 < 0.05, **𝑝 < 0.01, ***𝑝 < 0.001.

Table 3.6: Logistics-based Consider-then-Choose (L-CC) and MNL model estimation results, the
car-sharing dataset.
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Excluded groups Log-like AIC BIC LR Wald

L-CC
Model 1 Car types and features -38664.7 77403.3 77735.3 457.04 449.39
Model 2 Car location type and accessibility -38552.1 77202.2 77641.9 231.94 231.67
Model 3 Brands -38840.7 77729.4 77944.7 809.07 764.90

MNL
Model 1 Car types and features -35587.4 71246.8 71600.3 1492.05 1385.99
Model 2 Car location type and accessibility -35205.7 70507.5 70978.8 728.75 705.53
Model 3 Brands -35534.9 71115.8 71341.6 1387.03 1259.70

Table 3.7: Statistical significance of three groups of car attributes.

car alternatives is around 5%, while owners of cars listed, on average, only around two different

values of the price. Moreover, the most frequently used value of the hourly price corresponds to

78% of the car rentals and the second most frequently used value of the hourly price corresponds

to 16% of the car rentals. The low variation of the rental price is explained by the policies of the

online platform, for the time span of the dataset, that allows the owners to choose the price by

themselves, i.e., the platform as a central agent did not dynamically adjust the listed rental price

to efficiently match demand and supply as opposed to many ride-sharing platforms (e.g., Uber,

Lyft), which optimize the price of the ride to match riders with drivers on-demand. Finally, in

the same Table 3.5, we can also observe that more than 98% of car owners did not alter their

car access (i.e., open or closed), access hours (i.e., 24 hours or restricted), and location type (i.e.,

garage, street, surface lot, or valet).

Price endogeneity problem

Next, we want to address the concerns of potential price endogeneity in our empirical analysis.

First of all, estimating the demand with personalized data significantly alleviates the price en-

dogeneity problem, since each renter has only a trivial influence on the number of cars supplied

and the market rental price, while the empirical work with aggregate level transaction data is

more likely to face a very sever endogeneity issues. Nevertheless, having access to individual

consumer data is not always a big advantage because individuals’ demand could be correlated.

For example, we might have unobservable demand or supply shocks if a local convention was

organized in a particular day that might shift the demand curve. In this case, we need to use

instrumental variables to address the endogeneity problem. The natural approach in this case

would be to use the typical Hausman-style instrument [44], i.e., the average rental price of similar

cars in other geographical locations. However, in our dataset we are highly unlikely to have any
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price endogeneity issues because the rental price variation of the listed cars is very insignificant as

it was discussed above, i.e., the price does not react to any unobservable shocks (see Table 3.5).

3.6 Conclusion

In order to be successful in the long run, firms need to make accurate long-term demand predic-

tions. Herein, robustness of predictions models is of great importance because we are likely to

face significant noise in offer set definitions while making long-term demand predictions. In this

chapter, we demonstrate that models that account for the consideration set formation of cus-

tomers are robust to noise in the offer sets. Recall that, in the spirit of the consider-then-choose

framework, we assume that customers make a purchasing decision in two stages. First, a bound-

edly rational consumer, who suffers from limited attention, forms her consideration/competition

set, which is usually a small subset of substitutable items in the product category due to cog-

nitive limitations. Secondly, the consumer evaluates all products in her consideration set and

purchases the one that is most preferred.

In this chapter, we first demonstrate the robustness of our approach based on the synthetic

dataset. We explore different noise regimes (noise scenarios) when consider-then-choose type

models are better equipped to handle offer set noise than other popular models in the literature,

such as the MNL model. Then, we analyze two real world settings – a retail operation and a

car-sharing platform. Our empirical results suggest that the predictive performance of consider-

then-choose models is significantly more accurate than state-of-the-art benchmarks widely used

in marketing and economics literature. Moreover, we show that the relative improvement of

consider-then-choose models in predictive performance becomes even more significant with in-

creased noise in the consideration set definition embedded in the data. These results lead to

a promising methodology for researchers interested in choice-based demand estimation, where

identification of consideration sets is of significant importance. Moreover, we demonstrate that

the consider-then-choose type of choice model can provide important managerial insights about

the consideration set formation.
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3.6.1 Model extension

The GCC model, proposed in this, chapter might suffer from its one-directional cannibalization

property, i.e., preferences of individuals are characterized by the unique ranking in the GCC

model. Even though the same one directional cannibalization helps in reducing the impact of

noise in the offer set, the GCC model might be worse off when there is no noise in the sales

transaction data and cannibalization in the data generation process is bi-directional. Therefore,

we propose general consideration - then - general choice (GCGC) model as an extension of

the GCC model where we allow customers to be heterogeneous in their preferences. First, we

assume that there is a distribution 𝜇 : S𝑛 → [0, 1] over S𝑛, which is the set of all full rankings

or permutations of products in 𝑁+ with cardinality (𝑛 + 1)!. According to this model, before

making a choice, customers, first, sample both consideration set 𝐶 ⊂ 𝑁 and the preference order

𝜎 ∈ S𝑛 from the general distributions over the consideration sets 𝜆 and rankings 𝜇, respectively.

Then, customers choose the most preferred alternative in 𝐶 in accordance with the preference

order 𝜎. This model can be estimated in a similar way as GCC model with EM algorithm

(see Section 3.6.2 for the details) by dividing customers into 𝐾 segments such that for every

segment ℎ ∈ {1, ..., 𝐾} a customer considers an arbitrary subset of items 𝐶 ⊆ 𝑁 with likelihood

𝜆(𝐶) =
∏︀

𝑎𝑗∈𝐶 𝜃ℎ𝑗
∏︀

𝑎𝑗 /∈𝐶(1 − 𝜃ℎ𝑗) (recall that 𝜃ℎ𝑗 is the probability to include item 𝑎𝑗 in the

consideration set in the segment ℎ) and make choices according to the preference order 𝜎ℎ. For

a sufficiently large 𝐾, this heuristic calibration would be exact. If we have sparsity in customer

segments, then using this estimation technique with a relatively small 𝐾 would provide the exact

calibration of the GCGC model.

We compare the prediction performance of GCC model versus GCGC based on the IRI

dataset under different noise scenarios in the retail industry (see Section 3.3): (1) no extra noise,

(2) store-based noise, and (3) week-based noise. We estimated both GCC and GCGC models

for 𝐾 = 1, 2, ..., 5 and report the best performance measure from these 5 variants for MAPE

and RMSE metrics. Figure 3-12 illustrates MAPE (see left panel) and RMSE (see right panel)

scores of GCC and GCGC models, averaging across 20 product categories, for three different

noise regimes. We observe that the predictive performance of both models is rather robust to

the noise in the offer sets, i.e., the performances stay rather flat for all three noise regimes. From
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Figure 3-12: The average prediction scores under GCC and GCGC choice models.

the panels in Figure 3-12, we can see that neither GCC nor GCGC can dominate the other,

i.e., GCC dominates GCGC based on the RMSE metrics while GCGC outperforms the GCC

model based on the MAPE metrics. In Figure 3-13, we present scatter plots of the improvements

of GCC model versus GCGC model across 20 product categories under three noise regimes

discussed above: (1) no extra noise added, represented by green pluses, (2) store-based noise

added, represented by blue crosses, and (3) week-based noise added, represented by red dots.

In the left and right panels, we measure the predictive performance of the models based on the

MAPE and RMSE, respectively. Note that the improvement of GCC over GCGC varies across

product categories and noise regimes. The figure further supports the claim that we do not have

a clear winner between these two models by revealing that neither of these two models dominate

the other one for most of the product categories, noise regimes, or score metrics.

3.6.2 GCGC model: estimation methodology

The GCGC (i.e., general consideration - then - general choice) is the broadest class of consider-

then-choose type of models within RUM where customers have heterogeneous preferences and

consideration sets (i.e., before making a choice, customers sample their preference order 𝜎 over the

items in the product universe and the subset of items 𝐶 to consider from the general distributions

over product rankings and consideration sets, respectively).
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Figure 3-13: Scatter plots of the prediction score improvements of GCC model over GCGC.

Estimation with aggregate level data

Similarly to the Section 2.4.3, we calibrate GCGCmodel by dividing transactions into𝐾 segments

such that customers in segment ℎ sample their consideration sets based on the attention param-

eters 𝜃ℎ and have their preferences characterized by the ranking 𝜎ℎ. Then, the log-likelihood

function can be represented in the following way:

logL (𝜃,𝛾,𝜎) =
𝑇∑︁
𝑡=1

log
(︁ 𝐾∑︁

ℎ=1

𝛾ℎ𝜃ℎ,𝑗𝑡
∏︁

𝑎𝑗∈𝑆𝑡:
𝑎𝑗 ≻ℎ 𝑎𝑗𝑡

(1− 𝜃ℎ𝑗)
)︁
, (3.3)
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where 𝛾ℎ ≥ 0 is the weight of the class ℎ, s.t.
∑︀𝐾

ℎ=1 𝛾ℎ = 1; 𝑆𝑡 denotes the set of offered

items at time 𝑡; 𝑎𝑗𝑡 denotes the product purchased at time 𝑡; and 𝑇 denotes the time horizon.

Conceptually, we can obtain all the parameters of the GCGC model (i.e., distributions over the

preference lists and considerations sets) by maximizing the log-likelihood function above for a

sufficiently large 𝐾.

Next, we provide the initialization of the EM algorithm to calibrate GCGC model followed

by the “E” and “M” steps of every iteration.

Initialization: we randomly allocate sales transaction to one of the 𝐾 classes, resulting in an

initial allocation 𝒟1,𝒟2, . . . ,𝒟𝐾 , which form a partition of the collection of all the transactions.

Consequently, we set 𝛾
(0)
ℎ = |𝒟ℎ|/(

∑︀𝐾
𝑑=1 |𝒟𝑑|). Then, ≻ℎ (i.e., 𝜎ℎ) and 𝜃

(0)
ℎ𝑗 , for all ℎ ∈ {1, ..., 𝐾}

and 𝑎𝑗 ∈ 𝑁+, are obtained by solving the following optimization problem:

max
≻ℎ,𝜃ℎ

∑︁
𝑡∈𝒟ℎ

(︁
log 𝜃ℎ,𝑗𝑡 +

∑︁
𝑎𝑗∈𝑆𝑡:

𝑎𝑗 ≻ℎ 𝑎𝑗𝑡

log(1− 𝜃ℎ𝑗)
)︁
,

which is solved by using the outer-approximation algorithm for the ICC model in Section 2.4.2.

E-step: we compute 𝑃
(𝑞)
ℎ𝑡 , which is the membership probability of every transaction at time 𝑡

to belong to the segment ℎ based on the parameter estimates {≻(𝑞−1),𝜃(𝑞−1),𝛾(𝑞−1)} and the

purchasing transactions data (𝑎𝑗𝑡 , 𝑆𝑡)|𝑇𝑡=1:

𝑃
(𝑞)
ℎ𝑡 =

𝛾
(𝑞−1)
ℎ

[︃
𝜃
(𝑞−1)
ℎ,𝑗𝑡

∏︀
𝑎𝑗∈𝑆𝑡:

𝑎𝑗 ≻(𝑞−1)
ℎ 𝑎𝑗𝑡

(1− 𝜃(𝑞−1)
ℎ𝑗 )

]︃
∑︀𝐾

𝑟=1

[︃
𝛾
(𝑞−1)
ℎ

(︁
𝜃
(𝑞−1)
𝑟,𝑗𝑡

∏︀
𝑎𝑗∈𝑆𝑡:

𝑎𝑗 ≻(𝑞−1)
ℎ 𝑎𝑗𝑡

(1− 𝜃(𝑞−1)
𝑟𝑗 )

)︁]︃ .

M-step: first, we update class membership probabilities for every segment ℎ ∈ {1, 2, ..., 𝐾}:

𝛾
(𝑞)
ℎ =

∑︀𝑇
𝑡=1 𝑃

(𝑞)
ℎ𝑡

𝑇
,

and then optimize the conditional expected value of the log-likelihood function, obtained in the
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previous step, in terms of 𝜃ℎ and ≻ℎ for all ℎ ∈ {1, ..., 𝐾}:

max
≻ℎ,𝜃ℎ

𝑇∑︁
𝑡=1

𝑃
(𝑞)
ℎ𝑡 log

(︁
𝜃ℎ,𝑗𝑡

∏︁
𝑎𝑗∈𝑆𝑡:
𝑎𝑗≻ℎ𝑎𝑗𝑡

(1− 𝜃ℎ𝑗)
)︁
,

which is solved by using the outer-approximation algorithm for the ICC model in Section 2.4.2.

Note that the proposed EM algorithm we need to apply the outer-approximation algorithm

for every iteration. In order to reduce the computation time for the large-scaled problems we

might solve the optimization problem at “M”-step by ranking the products according to their

popularity for each segment ℎ. This way, we can obtain the preference order ≻(𝑞)
ℎ for 𝑞th iteration

of every segment ℎ. In this case, the “M” step in the EM algorithm reduces to solving a globally

concave maximization problem with a unique, closed form solution given by

𝜃
(𝑞)
ℎ𝑗 =

∑︀𝑇
𝑡=1 𝑃

(𝑞)
ℎ𝑡 I[𝑎𝑗𝑡 = 𝑎𝑗]∑︀𝑇

𝑡=1 𝑃
(𝑞)
ℎ𝑡 I[𝑎𝑗𝑡 = 𝑎𝑗] +

∑︀𝑇
𝑡=1 𝑃

(𝑞)
ℎ𝑡 I[𝑎𝑗 ∈ 𝑆𝑡, 𝑎𝑗 ≻(𝑞)

ℎ 𝑎𝑗𝑡 ]
.

Estimation with panel data

We update the EM algorithm above in the following way:

Initialization: we randomly allocate individuals to one of the 𝐾 classes, resulting in an initial

allocation 𝒟1,𝒟2, . . . ,𝒟𝐾 . Consequently, we set 𝛾
(0)
ℎ = |𝒟ℎ|/(

∑︀𝐾
𝑑=1 |𝒟𝑑|). Then, ≻ℎ (i.e., 𝜎ℎ)

and 𝜃
(0)
ℎ𝑗 , for all ℎ ∈ {1, ..., 𝐾} and 𝑎𝑗 ∈ 𝑁+, are obtained by solving the following optimization

problem:

max
≻ℎ,𝜃ℎ

∑︁
𝑖∈𝒟ℎ

(︁
log 𝜃ℎ,𝑗𝑖𝑡 +

∑︁
𝑎𝑗∈𝑆𝑖𝑡:

𝑎𝑗 ≻ℎ 𝑎𝑗𝑖𝑡

log(1− 𝜃ℎ𝑗)
)︁
,

which is solved by using the outer-approximation algorithm for the ICC model in Section 2.4.2.

E-step: we compute 𝑃
(𝑞)
ℎ𝑖 , which is the membership probability of every individual 𝑖 to belong

to the segment ℎ based on the parameter estimates {≻(𝑞−1),𝜃(𝑞−1),𝛾(𝑞−1)} and the purchasing
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transactions data (𝑎𝑗𝑡 , 𝑆𝑡)|𝑇𝑖
𝑡=1:

𝑃
(𝑞)
ℎ𝑖 =

𝛾
(𝑞−1)
ℎ

∏︀𝑇𝑖

𝑡=1

[︃
𝜃
(𝑞−1)
ℎ,𝑗𝑖𝑡

∏︀
𝑎𝑗∈𝑆𝑖𝑡:

𝑎𝑗 ≻(𝑞−1)
ℎ 𝑎𝑗𝑖𝑡

(1− 𝜃(𝑞−1)
ℎ𝑗 )

]︃
∑︀𝐾

𝑟=1

∏︀𝑇𝑖

𝑡=1

[︃
𝛾
(𝑞−1)
ℎ

(︁
𝜃
(𝑞−1)
𝑟,𝑗𝑖𝑡

∏︀
𝑎𝑗∈𝑆𝑖𝑡:

𝑎𝑗 ≻(𝑞−1)
ℎ 𝑎𝑗𝑖𝑡

(1− 𝜃(𝑞−1)
𝑟𝑗 )

)︁]︃ .

M-step: first, we update class membership probabilities for every segment ℎ ∈ {1, 2, ..., 𝐾}:

𝛾
(𝑞)
ℎ =

∑︀𝑚
𝑖=1 𝑃

(𝑞)
ℎ𝑡

𝑚
,

and then optimize the conditional expected value of the log-likelihood function, obtained in the

previous step, in terms of 𝜃ℎ and ≻ℎ for all ℎ ∈ {1, ..., 𝐾}:

max
≻ℎ,𝜃ℎ

𝑚∑︁
𝑖=1

𝑃
(𝑞)
ℎ𝑖

𝑇𝑖∑︁
𝑡=1

log
(︁
𝜃ℎ,𝑗𝑖𝑡

∏︁
𝑎𝑗∈𝑆𝑖𝑡:
𝑎𝑗≻ℎ𝑎𝑗𝑖𝑡

(1− 𝜃ℎ𝑗)
)︁
,

which is solved by using the outer-approximation algorithm for the ICC model in Section 2.4.2.
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Conclusion and Future Directions

This thesis begins by considering the implementation of personalized operational decisions in

the retail industry motivated by the availability of individual-level transaction data and recent

technological advances by brick-and-mortar stores. Using panel data, we demonstrate how the

retailer can first infer customer-level preferences for items within the category of analysis and

then decide the optimal subset of products to promote (if any) for each individual customer’s

visit to the store with the objective of maximizing immediate revenue from this visit. Next, we

propose a methodology to estimate consideration sets of customers from sales transaction data.

Theoretically, we derive necessary and sufficient conditions for a collection of observed choice

probabilities to be consistent with our model. In particular, we provide a closed-form expression

for computing the distribution over consideration sets from observed choice probabilities. Finally,

we analyze different operational applications of a consider-then-choose framework motivated by

the problems faced by online platforms. We conclude that models accounting for consideration

sets of customers are generally more robust to noise in the offer set definition than classical

choice models. Our work opens up opportunities and directions for future research. We begin

with future directions which address certain limitations of our proposed personalized promotions

algorithm:

∙ Effects of stockpiling. Our method focuses on the short-term objective of immediate profit

maximization in deciding the set of promoted products. As such, it ignores the stockpil-

ing behavior of customers, whereby customers take advantage of the discounted prices to

“stockpile” or purchase more than their immediate consumption need. Such stockpiling be-

havior impacts future purchase incidences from the customer and the long-term revenue for

the retailer. We argue that when compared to mass promotions, personalized promotions

161



www.manaraa.com

mitigate the negative effect of stockpiling. The reason is that stockpiling typically occurs

when a brand is promoted to a customer who would purchase the product at full price any-

way; the price discounts only end up enticing the customer to stockpile, shifting her future

purchases to the current period. Such erroneous price discounts are more likely to occur

as part of mass promotions when compared to personalized promotions. Nevertheless, per-

sonalization may not completely eliminate stockpiling, in which case our formulation can

be embedded within a dynamic programming (DP) framework to incorporate the effects

of stockpiling and any other long-term effects of current period promotion decision (c.f.,

[103], [56]). A state variable that keeps track of last purchase incidence and corresponding

quantity could help towards the optimal timing of future promotions.

∙ Reference price effect. Another long-term effect of price promotions is the reference price

effect. Repeated price reductions have the potential for lowering the reference price of the

brands for the customers [54]. Such a recalibration of the reference price reduces the future

impact of price discounts because customers now evaluate the discounts with respect to the

lower reference price as opposed to the full price of the product. The reference price effect

can be incorporated by embedding our promotion optimization framework within a DP.

The state variable of the DP keeps track of the reference price and the current promotion

decision affects the future profit (value-to-go) through its effect on the reference price.

∙ Purchase quantity estimation. In our implementation, we estimated the purchase quantity

of a brand conditional on its purchase (for both promoted and non-promoted copies) by

taking a simple average of the observed purchase quantities in the training data. This es-

timation technique might suffer from endogeneity bias. For instance, retailers may strate-

gically promote products expecting higher quantity purchases, say, during holidays. In

practice, this endogeneity bias may be corrected through detailed structural modeling to

obtain a more precise estimate of the purchase quantity of a brand as a function of its pro-

motion status. Such a correction will most certainly improve the predictive performance

of our model.

In the second part of this dissertation, we proposed GCGC model (see Section 3.6.1) where we

extended the GCC model by allowing customers to be heterogeneous in their preferences. An
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important area of the future research would be to further study GCGC model and its application

in practice: (i) find the optimal number of segments in GCGC model to strike a balance between

capturing heterogeneity of customers in their preferences and robustness to noise in sales transac-

tion data; (ii) address the problem of identifiability of GCGC model (i.e., what is the maximum

number of segments for the model to be identified?); and (iii) propose a more efficient way to

estimate the model for large-scale problems.
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Appendices
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Chapter 4

Proofs and Supplementary Materials

for Chapter 1

4.1 Preliminaries on DAGs

For completeness, we summarize the relevant notation from Chapter 1 and also introduce ad-

ditional notation. Let 𝒩 = {𝑎1, . . . , 𝑎𝑛} denote the universe of 𝑛 products. For the purposes

of this chapter, we ignore the no-purchase option and information about product promotions in

order to simplify exposition. This assumption is without loss of generality since we can explicitly

account for promotions by expanding the product universe and include the no-purchase option

as one more item. This is further developed in Section 1.6 in the main body of this thesis.

A DAG 𝐷 is a subset of pairwise preferences, {(𝑎𝑗, 𝑎𝑗′) : 1 ≤ 𝑗, 𝑗′ ≤ 𝑛}. We visualize a DAG

𝐷 as a directed graph with nodes as products and a directed edge from 𝑎 to 𝑏 if the ordered pair

(𝑎, 𝑏) ∈ 𝐷. We abuse notation and let 𝐷 denote both the directed graph and the collection of

pairwise preferences. We let 𝐸𝐷 denote the set of pairwise preferences in the transitive reduction

of 𝐷.

Let S𝑛 denote the collection of all possible 𝑛! rankings or permutations of the products in 𝒩 .

For any ranking 𝜎 ∈ S𝑛, we let 𝜎(𝑎) denote the preference ranking of product 𝑎 under ranking

𝜎. We adopt the convention that lower ranked products are preferred over higher ranked ones,

which means that product 𝑎𝑗 is preferred over product 𝑎𝑗′ under 𝜎 if and only if 𝜎(𝑎𝑗) < 𝜎(𝑎𝑗′).

Given a DAG 𝐷, let 𝑆𝐷 denote the subset of rankings that are consistent with 𝐷; that is,
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𝑆𝐷 := {𝜎 ∈ S𝑛 : 𝜎(𝑎) < 𝜎(𝑏) whenever (𝑎, 𝑏) ∈ 𝐷}.

For any product 𝑎𝑗 and DAG 𝐷, the reachability set Ψ𝐷(𝑎) comprises the set of all nodes

that can be reached from 𝑎 through a directed path in 𝐷. Formally, Ψ𝐷(𝑎) := {𝑏 : there is a

directed path from 𝑎 to 𝑏 in 𝐷}. We assume that 𝑎 is reachable from itself, so 𝑎 ∈ Ψ(𝑎). The set

Θ𝐷(𝑎) comprises the nodes from which 𝑎 can be reached, i.e., Θ𝐷(𝑎) := {𝑏 : there is a directed

path from 𝑏 to 𝑎 in 𝐷}. To be consistent, we also include 𝑎 in Θ𝐷(𝑎). When the DAG 𝐷 is clear

from the context, we drop 𝐷 from the notation and simply write Ψ(𝑎) and Θ(𝑎).

For any subset 𝑆 ⊆ 𝒩 , suppose 𝜋 is a ranking of the products in 𝑆 possibly including less

than 𝑛 products. Then, 𝜎(𝜋) denotes the set of all complete rankings of the products in 𝒩 that

are consistent with 𝜋, i.e., 𝜎(𝜋) = {𝜎 ∈ S𝑛 : 𝜎(𝑎) < 𝜎(𝑏) whenever 𝜋(𝑎) < 𝜋(𝑏)}.

4.2 Technical results

4.2.1 Propositions and proofs in Section 1.2

Preference graph decycling

Here we argue that the decycling procedure prioritizes retaining as many candidate edges as

possible (measured by the sum of the weights involved). To that end, we show that the weight

of the candidate edges in DAG 𝐷 after preference graph 𝐺 decycling is equal to the weight of

the candidate edges in DAG 𝐷* such that 𝐷* ⊆ 𝐺 has maximum weight of the candidate edges.

Let 𝑐𝑤(𝐷) denote the weight of the candidate edges in DAG 𝐷 and let 𝑖𝑤(𝐷) denote the

weight of the implicit candidate edges in DAG 𝐷. Let 𝑡𝑤(𝐷) denote the total weight of DAG 𝐷,

i.e., 𝑡𝑤(𝐷) = 𝑐𝑤(𝐷) + 𝑖𝑤(𝐷). Let us define 𝐷* as a DAG in 𝐺 with the maximum weight of the

candidate edges, i.e., 𝐷* = argmax{𝑐𝑤(𝐷) : 𝐷 ⊆ 𝐺}. Let 𝐷 denote the DAG obtained from 𝐺

after solving MIP (1.2). The next result follows.

Proposition 1. Candidate weight of DAG 𝐷, obtained after MIP (1.2) decycling applied over 𝐺

is equal to the candidate weight of DAG 𝐷* such that 𝐷* = max{𝑐𝑤(𝐷) : 𝐷 ⊆ 𝐺}, i.e.,

𝑐𝑤(𝐷) = 𝑐𝑤(𝐷*).
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Proof. of Proposition 1: Assume by contradiction that 𝑐𝑤(𝐷) < 𝑐𝑤(𝐷*). Because 𝑐𝑤(·) is always

an integer, it follows that 𝑐𝑤(𝐷*) − 𝑐𝑤(𝐷) ≥ 1. Further, note that 𝐷* is a feasible solution to

the optimization problem MIP (1.2), which implies that 𝑡𝑤(𝐷) ≥ 𝑡𝑤(𝐷*). It now follows from

the definition of 𝑡𝑤(·) that

𝑐𝑤(𝐷) + 𝑖𝑤(𝐷) ≥ 𝑐𝑤(𝐷*) + 𝑖𝑤(𝐷*) =⇒ 𝑖𝑤(𝐷) ≥ 𝑐𝑤(𝐷*)− 𝑐𝑤(𝐷) + 𝑖𝑤(𝐷*).

Because 𝑖𝑤(𝐷*) ≥ 0 and 𝑐𝑤(𝐷*) − 𝑐𝑤(𝐷) ≥ 1, we obtain that 𝑖𝑤(𝐷) ≥ 1. This, however,

is not possible because of the scaling factor 1/(𝑛2𝑇 ). Specifically, note that the maximum

number of implicit candidate edges is 𝑛(𝑛−1) and the maximum possible weight of each implicit

edge is 𝑇/(𝑛2𝑇 ) = 1/𝑛2. Therefore, the aggregate implicit weight is always bounded above by

𝑛(𝑛− 1)/𝑛2, which is strictly less than 1. We have thus arrived at a contradiction.

Likelihood of the DAG-based choice model

Proposition 2. For a given set of parameters 𝛽 that characterize the distribution 𝜆, the likelihood

function of the DAG-based choice model is given by

logℒ(Panel Data) =
𝑚∑︁
𝑖=1

log 𝜆(𝐷𝑖) =
𝑚∑︁
𝑖=1

log

⎛⎝∑︁
𝜎∈𝑆𝐷𝑖

𝜆(𝜎)

⎞⎠.

Proof. of Proposition 2: For each individual 𝑖 and transaction 𝑡, let 𝐶𝑖𝑡 ⊆ 𝑆𝑖𝑡 denote the con-

sideration set of the individual. Because products outside the consideration set do not affect

the individual’s choices, the data log-likelihood only depends on the choices and the consider-

ation sets, rather than choices and offer sets. Letting 𝑓(𝑎𝑗𝑖𝑡 , 𝐶𝑖𝑡, 𝐷𝑖) denote the probability of
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purchasing product 𝑎𝑗𝑖𝑡 from consideration set 𝐶𝑖𝑡 for individual 𝑖 with DAG 𝐷𝑖, we can write

logℒ(Panel Data|𝛽) Δ
=

𝑚∑︁
𝑖=1

log Pr

[︂
(𝑎𝑗𝑖𝑡 , 𝐶𝑖𝑡)|𝑡=𝑇𝑖

𝑡=1 , 𝐷𝑖

⃒⃒⃒⃒
𝛽

]︂
=

𝑚∑︁
𝑖=1

log

(︂
Pr(𝐷𝑖|𝛽) · Pr

[︂
(𝑎𝑗𝑖𝑡 , 𝐶𝑖𝑡)|𝑡=𝑇𝑖

𝑡=1

⃒⃒⃒⃒
𝛽, 𝐷𝑖

]︂)︂

=
𝑚∑︁
𝑖=1

log

(︂
Pr(𝐷𝑖|𝛽) ·

𝑇𝑖∏︁
𝑡=1

Pr

[︂
(𝑎𝑗𝑖𝑡 , 𝐶𝑖𝑡)

⃒⃒⃒⃒
𝛽, 𝐷𝑖

]︂)︂

=
𝑚∑︁
𝑖=1

log Pr(𝐷𝑖|𝛽) +
𝑚∑︁
𝑖=1

𝑇𝑖∑︁
𝑡=1

log 𝑓(𝑎𝑗𝑖𝑡 , 𝐶𝑖𝑡, 𝐷𝑖)} (4.1)

The second equality follows from a straightforward application of the conditional probability

formula. The third equality follows because conditioning on the DAG 𝐷𝑖, individual 𝑖’s purchase

probabilities can be computed independently.

We now focus on the term 𝑓(𝑎𝑗𝑖𝑡 , 𝐶𝑖𝑡, 𝐷𝑖). Note that we only observe the offer sets 𝑆𝑖𝑡. The

consideration sets 𝐶𝑖𝑡 are latent. Nevertheless, given 𝐷𝑖, we can constrain 𝐶𝑖𝑡 sufficiently to allow

for the computation of 𝑓(𝑎𝑗𝑖𝑡 , 𝐶𝑖𝑡, 𝐷𝑖). There are two cases. First, we consider the case when

none of the edges in the set {(𝑎𝑗𝑖𝑡 , 𝑎𝑘) : 𝑎𝑘 ∈ 𝑆𝑖𝑡 ∖ {𝑎𝑗𝑖𝑡}} was deleted in the decycling step. In

this case, the customer always prefers product 𝑎𝑗𝑖𝑡 over all the other products in the offer set

𝑆𝑖𝑡, and therefore, chooses product 𝑎𝑗𝑖𝑡 irrespective of the consideration set. This implies that

𝑓(𝑎𝑗𝑖𝑡 , 𝐶𝑖𝑡, 𝐷𝑖) = 1 for all 𝐶𝑖𝑡 ⊆ 𝑆𝑖𝑡 such that 𝑎𝑗𝑖𝑡 ∈ 𝐶𝑖𝑡.

Next, we consider the case when some of the edges in the set {(𝑎𝑗𝑖𝑡 , 𝑎𝑘) : 𝑎𝑘 ∈ 𝑆𝑖𝑡 ∖ {𝑎𝑗𝑖𝑡}}

are deleted in the decycling step. Because the decycling procedure deletes the smallest possible

weight of edges, the edge (𝑎𝑗𝑖𝑡 , 𝑎𝑘) for some 𝑎𝑘 ∈ 𝑆𝑖𝑡 ∖ {𝑎𝑗𝑖𝑡} is deleted only if there is a directed

path from 𝑎𝑘 to 𝑎𝑗𝑖𝑡 in the final DAG 𝐷𝑖. Now, because 𝑎𝑘 is preferred over 𝑎𝑗𝑖𝑡 , the only way

the customer would choose 𝑎𝑗𝑖𝑡 when 𝑎𝑘 was also on offer is if 𝑎𝑘 was not considered. We can

thus conclude that 𝑎𝑘 /∈ 𝐶𝑖𝑡 for all 𝑎𝑘 ∈ 𝑆𝑖𝑡 ∖ {𝑎𝑗𝑖𝑡} that are preferred over 𝑎𝑗𝑖𝑡 . Equivalently, 𝑎𝑗𝑖𝑡

is preferred over 𝑎𝑘 for all 𝑎𝑘 ∈ 𝐶𝑖𝑡, which implies that 𝑓(𝑎𝑗𝑖𝑡 , 𝐶𝑖𝑡, 𝐷𝑖) = 1.

We have thus shown that 𝑓(𝑎𝑗𝑖𝑡 , 𝐶𝑖𝑡, 𝐷𝑖) = 1 for all individuals 𝑖 and all transactions 𝑡. It
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now follows from (4.1) that

logℒ(Panel Data|𝛽) =
𝑚∑︁
𝑖=1

log Pr(𝐷𝑖|𝛽) =
𝑚∑︁
𝑖=1

log 𝜆(𝐷𝑖) =
𝑚∑︁
𝑖=1

log

⎛⎝∑︁
𝜎∈𝑆𝐷𝑖

𝜆(𝜎)

⎞⎠.
The result of the proposition now follows.

4.2.2 Propositions and proofs in Section 1.3

The following auxiliary results will be used in the proofs of the results in the main body of this

thesis. We start quoting Lemma A1 from [52]:

Lemma A1 in [52] Consider two subsets 𝑆1, 𝑆2 ⊂ 𝒩 with 𝑆1 ∩ 𝑆2 = ∅. Let 𝜋1 be a ranking

over 𝑆1, and 𝜋2 be a ranking over 𝑆2. Assume w.l.o.g. that 𝜋1 = (𝑎1,1, 𝑎1,2, . . . , 𝑎1,𝑘1) and

𝜋2 = (𝑎2,1, 𝑎2,2, . . . , 𝑎2,𝑘2). For a fixed 𝑖, 0 ≤ 𝑖 ≤ 𝑘1, let 𝒮𝑖(𝜋1, 𝜋2) be the set of rankings in S𝑛

consistent with both 𝜋1 and 𝜋2, where the head of 𝜋2 is located after the 𝑖th element of 𝜋1, i.e.,

𝒮𝑖(𝜋1, 𝜋2) = {𝜎 ∈ S𝑛 : 𝜎 ∈ 𝜎(𝜋1) ∩ 𝜎(𝜋2), with 𝜎(𝑎2,1) ≥ 𝑖+ 1}.

Then,

𝜆(𝒮𝑖(𝜋1, 𝜋2)) =
𝑖∏︁

𝑗=1

𝑣1,𝑗∑︀𝑘1
𝑗′=𝑗 𝑣1,𝑗′ +

∑︀𝑘2
𝑗′=1 𝑣2,𝑗′

𝑘1∏︁
𝑗=𝑖+1

𝑣1,𝑗∑︀𝑘1
𝑗′=𝑗 𝑣1,𝑗′

𝜆(𝜋2).

The first new result refers to an expression for the probability of DAG 𝐷 that is split in two

independent terms by breaking the bottom part of 𝐷 in two pieces.

Lemma 4.2.1. Given a DAG 𝐷, let 𝑎𝑦 ∈ 𝒩 be a node such that every node in Ψ𝐷(𝑎𝑦) ∖ {𝑎𝑦}

has at most one incoming edge and the subgraph 𝐷[𝑎𝑦] induced in 𝐷 by the set of nodes Ψ𝐷(𝑎𝑦)

is a directed tree; see Figure 4-1. Further, let 𝐷̄[𝑎𝑦] denote the subgraph induced in 𝐷 by the set

of nodes
(︀
𝒩 ∖Ψ𝐷(𝑎𝑦)

)︀
∪ {𝑎𝑦}. Then, under the MNL distribution 𝜆, we have that

𝜆(𝐷) = 𝜆(𝐷[𝑎𝑦]) · 𝜆𝑦(𝐷̄[𝑎𝑦]),

where 𝜆𝑦 is the distribution over rankings obtained by replacing the MNL weight 𝑣𝑦 of product 𝑎𝑦
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𝑎1

DAG 𝐷

⋯
𝑎2

𝑎𝑦

𝑎3 𝑎4

𝑎5 𝑎6

𝑎1

DAG  𝐷 [𝑎𝑦]

⋯
𝑎2

𝑎𝑦

DAG 𝐷[𝑎𝑦]

𝑎𝑦

𝑎3 𝑎4

𝑎5
𝑎6

𝐷1 = (𝑆1, 𝐸1)

𝐷3 = ({𝑎𝑦}, ∅)

𝐷2 = (𝑆2, 𝐸2)

𝐸3

Figure 4-1: Illustration for the proof in Lemma 4.2.1. The bottom part of a DAG is split in two
independent terms.

with 𝑣Ψ𝐷(𝑎𝑦) =
∑︀

𝑎𝑖∈Ψ𝐷(𝑎𝑦)
𝑣𝑖.

Proof. of Lemma 4.2.1: Note that 𝐷[𝑎𝑦] is the tree “hanging” from the node 𝑎𝑦 in DAG 𝐷.

We establish the result of this lemma by showing that the term 𝜆(𝐷[𝑎𝑦]) factors out from the

expression for 𝜆(𝐷).

For that, let 𝑆1 denote 𝒩 ∖ Ψ𝐷(𝑎𝑦) and 𝑆2 denote Ψ𝐷(𝑎𝑦). It is clear that 𝑆1 ∩ 𝑆2 = ∅ and

𝑆1 ∪ 𝑆2 = 𝒩 . For any ranking 𝜎 and position 1 ≤ 𝑟 ≤ 𝑛, let 𝜎−1(𝑟) denote the product ranked

at position 𝑟 under 𝜎. Let 𝐷1 and 𝐷2 denote the subgraphs in 𝐷 induced by the sets 𝑆1 and 𝑆2,

respectively. It follows from our notation that 𝐷2 = 𝐷[𝑎𝑦]. Let 𝐸1 and 𝐸2 denote the edges in

the transitive reductions of 𝐷1 and 𝐷2, respectively.

With this notation, we first establish the following result.

Claim: The set 𝐸𝐷 of edges in the transitive reduction of 𝐷 can be partitioned as

𝐸𝐷 = 𝐸1∪𝐸2∪𝐸3, where 𝐸3 = {(𝑎, 𝑎𝑦) : (𝑎, 𝑎𝑦) ∈ 𝐸𝐷} and 𝐸𝑖∩𝐸𝑗 = ∅ ∀ 1 ≤ 𝑖 ̸= 𝑗 ≤ 3 (4.2)

Proof. We first note that 𝐸1 ∪ 𝐸2 ∪ 𝐸3 ⊆ 𝐸𝐷 since it follows by definition that 𝐸𝑖 ⊆ 𝐸𝐷 for all

1 ≤ 𝑖 ≤ 3. To show that 𝐸𝐷 ⊆ 𝐸1 ∪ 𝐸2 ∪ 𝐸3, consider an edge (𝑎, 𝑏) ∈ 𝐸𝐷. We note that if

𝑎 ∈ 𝑆2, then 𝑏 must belong to 𝑆2. The reason is that since 𝑆2 = Ψ𝐷(𝑎𝑦), if 𝑎 ∈ 𝑆2, then 𝑎 is

reachable from 𝑎𝑦 and because 𝑏 is reachable from 𝑎, it must be that 𝑏 is also reachable from 𝑎𝑦,

which implies that 𝑏 ∈ Ψ𝐷(𝑎𝑦) = 𝑆2. Therefore, there are two cases to consider: (i) both 𝑎 and

𝑏 belong to 𝑆1 or 𝑆2 and (ii) 𝑎 ∈ 𝑆1 and 𝑏 ∈ 𝑆2. In case (i), it follows by definition that (𝑎, 𝑏)
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belongs to 𝐸1 or 𝐸2. In case (ii), since every node in 𝑆2 ∖ {𝑎𝑦} can have at most one incoming

edge and every node in 𝑆2 ∖ {𝑎𝑦} already has an incoming edge from a node in 𝑆2, the only way

there can be an edge from 𝑎 ∈ 𝑆1 to 𝑏 is if 𝑏 = 𝑎𝑦. It now follows that (𝑎, 𝑏) = (𝑎, 𝑎𝑦) ∈ 𝐸3.

We have thus shown that 𝐸𝐷 = 𝐸1 ∪ 𝐸2 ∪ 𝐸3. The fact that the three sets 𝐸1, 𝐸2, and 𝐸3 are

mutually disjoint follows immediately from noting that the sets 𝑆1 and 𝑆2 are disjoint.

With the above decomposition of the edges of 𝐸𝐷, we now show that the set of rankings 𝑆𝐷

can be decomposed in a convenient manner. Consider the following definitions:

∙ Let 𝜋1 (of length 𝑘1) and 𝜋2 (of length 𝑘2) be rankings of products in the sets 𝑆1 and 𝑆2,

respectively. Note that 𝑘1 + 𝑘2 = 𝑛.

∙ Let 𝑋 be the set of tuples (𝜋1, 𝜋2) such that 𝜋1 and 𝜋2 are consistent with DAGs 𝐷1 and

𝐷2, respectively. In other words, 𝑋 = {(𝜋1, 𝜋2) : 𝜎(𝜋1) ⊂ 𝑆𝐷1 , 𝜎(𝜋2) ⊂ 𝑆𝐷2}.

∙ For any 1 ≤ 𝑖 ≤ 𝑘1, let 𝒮𝑖(𝜋1, 𝜋2) denote the set of rankings in S𝑛 consistent with both

𝜋1 and 𝜋2 where the head of 𝜋2 is located after the 𝑖th element of 𝜋1, i.e. 𝒮𝑖(𝜋1, 𝜋2) ={︀
𝜎 ∈ S𝑛 : 𝜎 ∈ 𝜎(𝜋1) ∩ 𝜎(𝜋2), with 𝜎(𝜋−1

2 (1)) ≥ 𝜎(𝜋−1
1 (𝑖)) + 1

}︀
.

∙ Further, let 𝑖(𝜋1) denote the position of the least preferred item in Θ𝐷(𝑎𝑦) in the ranking

𝜋1, i.e., 𝑖(𝜋1) = max {𝜋1(𝑎) : 𝑎 ∈ Θ𝐷(𝑎𝑦)}.

Claim: The set of rankings 𝑆𝐷 is obtained by taking a tuple (𝜋1, 𝜋2) ∈ 𝑋 and combining them

such that the head of 𝜋2 occurs after the 𝑖(𝜋1)th element of 𝜋1. More precisely, we claim that

𝑆𝐷 =
⋃︁

(𝜋1,𝜋2)∈𝑋

𝒮𝑖(𝜋1)(𝜋1, 𝜋2), where 𝒮𝑖(𝜋1)(𝜋1, 𝜋2)∩𝒮𝑖(𝜋′
1)
(𝜋′

1, 𝜋
′
2) = ∅ for (𝜋1, 𝜋2) ̸= (𝜋′

1, 𝜋
′
2) (4.3)

Proof. We first show that 𝒮𝑖(𝜋1)(𝜋1, 𝜋2) ⊆ 𝑆𝐷 for all (𝜋1, 𝜋2) ∈ 𝑋. For that, consider 𝜎 ∈

𝒮𝑖(𝜋1)(𝜋1, 𝜋2) and consider an edge (𝑎, 𝑏) ∈ 𝐸𝐷. It is sufficient to show that 𝜎(𝑎) < 𝜎(𝑏). It

follows from (4.2) that (𝑎, 𝑏) is in either 𝐸1 or 𝐸2 or 𝐸3. If (𝑎, 𝑏) is in 𝐸1, then we must have

that 𝜋1(𝑎) < 𝜋1(𝑏) because 𝜋1 is consistent with 𝐷1. Since 𝜎 is consistent with 𝜋1, we have

that 𝜎(𝑎) < 𝜎(𝑏). Using a symmetric argument, we can similarly show that 𝜎(𝑎) < 𝜎(𝑏) when

(𝑎, 𝑏) ∈ 𝐸2.
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Now suppose that (𝑎, 𝑏) ∈ 𝐸3. We then have that 𝑏 = 𝑎𝑦. Since 𝜋2 is consistent with 𝐷2

and 𝑎𝑦 is preferred over every product in 𝑆2 ∖ {𝑎𝑦} under the partial order 𝐷2, it follows that

𝑎𝑦 must be the head of 𝜋2, i.e., 𝜋2(𝑎𝑦) = 1. Now, let 𝑎* denote the least preferred element

under 𝜋1 in the set Θ𝐷(𝑎𝑦). Since (𝑎, 𝑎𝑦) ∈ 𝐸𝐷, we have that 𝑎 ∈ Θ𝐷(𝑎𝑦), implying that

𝜎(𝑎) = 𝜋1(𝑎) ≤ 𝜋1(𝑎
*) = 𝜎(𝑎*), with equality when 𝑎 = 𝑎*. Note that both rankings 𝜎 and 𝜋1

must coincide until position 𝑖(𝜋1). It also follows by our definitions that 𝜋1(𝑎
*) = 𝑖(𝜋1) and

𝜎(𝑎𝑦) = 𝜎(𝜋−1
2 (1)) > 𝜎(𝜋−1

1 (𝑖(𝜋1)) = 𝜎(𝑎*), where the inequality follows from the definition of

𝒮𝑖(𝜋1)(𝜋1, 𝜋2) and the fact that 𝜎 ∈ 𝒮𝑖(𝜋1)(𝜋1, 𝜋2). We have thus shown that 𝜎(𝑎) ≤ 𝜎(𝑎*) <

𝜎(𝑎𝑦) = 𝜎(𝑏), establishing the result that 𝒮𝑖(𝜋1)(𝜋1, 𝜋2) ⊆ 𝑆𝐷 for all (𝜋1, 𝜋2) ∈ 𝑋, which implies

that
⋃︀

(𝜋1,𝜋2)∈𝑋 𝒮𝑖(𝜋1)(𝜋1, 𝜋2) ⊆ 𝑆𝐷.

We now show that 𝑆𝐷 ⊆
⋃︀

(𝜋1,𝜋2)∈𝑋 𝒮𝑖(𝜋1)(𝜋1, 𝜋2). For that consider 𝜎 ∈ 𝑆𝐷 and let 𝜋1 and

𝜋2 denote the rankings 𝜎 induced on the set of products 𝑆1 and 𝑆2, respectively. We show that

𝜎 ∈ 𝒮𝑖(𝜋1)(𝜋1, 𝜋2). It follows by the definitions of 𝜋1 and 𝜋2 that 𝜎 ∈ 𝜎(𝜋1)∩𝜎(𝜋2). Therefore, it is

sufficient to show that 𝜎(𝜋−1
2 (1)) ≥ 𝜎(𝜋−1

1 (𝑖(𝜋1))+1. Using the arguments above, it readily follows

that 𝜋−1
2 (1) = 𝑎𝑦. Since 𝜎 is consistent with 𝐷, we have that 𝜎(𝑎) < 𝜎(𝑎𝑦) for all 𝑎 ∈ Θ𝐷(𝑎𝑦),

and in particular, 𝜎(𝑎*) < 𝜎(𝑎𝑦), where 𝑎
* is the least preferred product under 𝜋1 from the set

Θ𝐷(𝑎𝑦). Since 𝑖(𝜋1) = 𝜋1(𝑎
*) by definition, we have shown that 𝜎(𝜋−1

1 (𝑖(𝜋1))) < 𝜎(𝑎𝑦). We have

thus established that 𝑆𝐷 ⊆
⋃︀

(𝜋1,𝜋2)∈𝑋 𝒮𝑖(𝜋1)(𝜋1, 𝜋2).

The arguments above establish that 𝑆𝐷 =
⋃︀

(𝜋1,𝜋2)∈𝑋 𝒮𝑖(𝜋1)(𝜋1, 𝜋2). The disjointness of 𝒮𝑖(𝜋1)(𝜋1, 𝜋2)

and 𝒮𝑖(𝜋′
1)
(𝜋′

1, 𝜋
′
2) for (𝜋1, 𝜋2) ̸= (𝜋′

1, 𝜋
′
2) readily follows from the disjointness of 𝜎(𝜋1)∩ 𝜎(𝜋2) and

𝜎(𝜋′
1) ∩ 𝜎(𝜋′

2) for (𝜋1, 𝜋2) ̸= (𝜋′
1, 𝜋

′
2). We have thus established the claim in (4.3).

We can then write from (4.3) that

𝜆(𝐷) =
∑︁
𝜎∈𝑆𝐷

𝜆(𝜎) =
∑︁

(𝜋1,𝜋2)∈𝑋

𝜆
(︀
𝒮𝑖(𝜋1)(𝜋1, 𝜋2)

)︀
=

∑︁
𝜋1 : 𝜎(𝜋1)⊂𝑆𝐷1

∑︁
𝜋2 : 𝜎(𝜋2)⊂𝑆𝐷2

𝜆
(︀
𝒮𝑖(𝜋1)(𝜋1, 𝜋2)

)︀
.

Now consider (𝜋1, 𝜋2) ∈ 𝑋. Without loss of generality, suppose that 𝜋1 = (𝑎1,1, . . . , 𝑎1,𝑘1) and
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𝜋2 = (𝑎2,1, . . . , 𝑎2,𝑘2). Then, invoking [52, Lemma A1], we can write

𝜆
(︀
𝒮𝑖(𝜋1)(𝜋1, 𝜋2)

)︀
=

[︃
𝑖(𝜋1)∏︁
𝑗=1

𝑣1,𝑗∑︀𝑘1
𝑗′=𝑗 𝑣1,𝑗′ +

∑︀𝑘2
𝑗′=1 𝑣2,𝑗′

𝑘1∏︁
𝑗=𝑖(𝜋1)+1

𝑣1,𝑗∑︀𝑘1
𝑗′=𝑗 𝑣1,𝑗′

]︃
· 𝜆(𝜋2)

=

[︃
𝑖(𝜋1)∏︁
𝑗=1

𝑣1,𝑗∑︀𝑘1
𝑗′=𝑗 𝑣1,𝑗′ + 𝑣Ψ𝐷(𝑎𝑦)

𝑘1∏︁
𝑗=𝑖(𝜋1)+1

𝑣1,𝑗∑︀𝑘1
𝑗′=𝑗 𝑣1,𝑗′

]︃
· 𝜆(𝜋2)

= 𝑔(𝜋1) · 𝜆(𝜋2),

where the second equality follows from the fact that 𝑆2 = Ψ𝐷(𝑎𝑦), and where we define

𝑔(𝜋1) =

𝑖(𝜋1)∏︁
𝑗=1

𝑣1,𝑗∑︀𝑘1
𝑗′=𝑗 𝑣1,𝑗′ + 𝑣Ψ𝐷(𝑎𝑦)

𝑘1∏︁
𝑗=𝑖(𝜋1)+1

𝑣1,𝑗∑︀𝑘1
𝑗′=𝑗 𝑣1,𝑗′

.

We now have

𝜆(𝐷) =
∑︁

𝜋1 : 𝜎(𝜋1)⊂𝑆𝐷1

∑︁
𝜋2 : 𝜎(𝜋2)⊂𝑆𝐷2

𝜆
(︀
𝒮𝑖(𝜋1)(𝜋1, 𝜋2)

)︀
=

[︂ ∑︁
𝜋1 : 𝜎(𝜋1)⊂𝑆𝐷1

𝑔(𝜋1)

]︂
·
[︂ ∑︁

𝜋2 : 𝜎(𝜋2)⊂𝑆𝐷2

𝜆(𝜋2)

]︂
.

Noting that ∑︁
𝜋2 : 𝜎(𝜋2)⊂𝑆𝐷2

𝜆(𝜋2) =
∑︁

𝜎∈𝑆𝐷2

𝜆(𝜎) = 𝜆(𝐷[𝑎𝑦]),

we have shown that

𝜆(𝐷) = 𝜆(𝐷[𝑎𝑦]) ·
[︂ ∑︁

𝜋1 : 𝜎(𝜋1)⊂𝑆𝐷1

𝑔(𝜋1)

]︂
. (4.4)

It now suffices to show that

𝜆𝑦(𝐷̄[𝑎𝑦]) =
∑︁

𝜋1 : 𝜎(𝜋1)⊂𝑆𝐷1

𝑔(𝜋1).

For that, consider the distribution 𝜆𝑦 in which the weight 𝑣𝑦 is replaced by 𝑣Ψ𝐷(𝑎𝑦), and repeat

the above set of arguments for the DAG 𝐷̄[𝑎𝑦] with the nodes of the DAG decomposed into sets

𝑆1 as defined above and 𝑆3 = {𝑎𝑦}. For any ranking 𝜋1 of the products in set 𝑆1, note that 𝑔(𝜋1)
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remains the same under both distributions 𝜆 and 𝜆𝑦. As a result, following (4.4), we can write

𝜆𝑦(𝐷̄[𝑎𝑦]) = 𝜆𝑦(𝐷3) ·
[︂ ∑︁

𝜋1 : 𝜎(𝜋1)⊂𝑆𝐷1

𝑔(𝜋1)

]︂
,

where 𝐷3 is the DAG induced in 𝐷 by 𝑆3. Since 𝑆3 is a singleton, the DAG 𝐷3 will be empty,

implying that 𝜆𝑦(𝐷3) = 1. We have thus shown that

𝜆𝑦(𝐷̄[𝑎𝑦]) =
∑︁

𝜋1 : 𝜎(𝜋1)⊂𝑆𝐷1

𝑔(𝜋1).

The result of the lemma now follows.

To establish the next result, we first quote the so-called internal consistency property referred

to in [52], i.e., the probability of a ranking in a subset of products only depends on the relative

order of the elements in the subset.

Proposition A1.2 in [52]. For any subset 𝑆 of 𝑘 products, let 𝜋 be a ranking over the elements

of 𝑆. Let 𝜎(𝜋) denote the set of full rankings over 𝒩 defined as

𝜎(𝜋) = {𝜎 : 𝜎(𝑎𝑖) < 𝜎(𝑎𝑗) whenever 𝜋(𝑎𝑖) < 𝜋(𝑎𝑗) for all 𝑎𝑖, 𝑎𝑗 ∈ 𝑆} .

Then, it must hold that

𝜆(𝜋) =
∑︁

𝜎∈𝜎(𝜋)

𝜆(𝜎) =
𝑘∏︁

𝑟=1

𝑣𝜋𝑟∑︀𝑘
𝑗=𝑟 𝑣𝜋𝑗

.

We also need the following notation. Given a DAG 𝐷 and product 𝑎𝑦, let 𝜆
aug
𝑦 denote the

distribution of rankings on the expanded product universe 𝒩 ∪
{︀
𝑎′𝑦
}︀
, where 𝑎′𝑦 is a copy of the

product 𝑎𝑦, with the weight 𝑣𝑦 of product 𝑎𝑦 replaced with 𝑣Ψ𝐷(𝑎𝑦) and the copy 𝑎′𝑦 also assigned

the weight 𝑣Ψ𝐷(𝑎𝑦).

We say that a node 𝑎 in DAG 𝐷 is a v-node if it has more than one incoming edge. We define

the v-degree of a DAG 𝐷 as
∑︀

𝑎𝑗 is a v-node(𝑑
in
𝑗 − 1), where 𝑑in𝑗 is the in-degree of node 𝑎𝑗. We now

establish the following result.
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Lemma 4.2.2. Suppose that a leaf node 𝑎𝑦 in the DAG 𝐷 has at least two incoming edges. Then

there exists DAG 𝐷split whose v-degree is one less than that of 𝐷, such that

𝜆aug𝑦 (𝐷split) ≤ 𝜆(𝐷).

The inequality is strict when all the parameters under the MNL model are positive.

Furthermore the approximate likelihoods of the DAGs 𝐷 and 𝐷split are equal, i.e., 𝜆̃aug𝑦 (𝐷split) =

𝜆̃(𝐷) =
∏︀

𝑎∈𝒩
𝑣𝑎∑︀

𝑎′∈Ψ𝐷(𝑎) 𝑣𝑎′
.

Proof. of Lemma 4.2.2: Since the leaf node 𝑎𝑦 in DAG𝐷 has at least two incoming edges, suppose

w.l.o.g. that (𝑎1, 𝑎𝑦), (𝑎2, 𝑎𝑦) ∈ 𝐸𝐷. Let 𝐷1 denote the DAG obtained by adding the isolated

copy 𝑎′𝑦 to 𝐷. Let 𝐷split denote the DAG obtained by erasing the edge (𝑎1, 𝑎𝑦) and adding the

edge (𝑎2, 𝑎
′
𝑦) to 𝐷1; in other words, 𝐸𝐷split = 𝐸𝐷 ∖ {(𝑎1, 𝑎𝑦)} ∪

{︀
(𝑎2, 𝑎

′
𝑦)
}︀
. Figure 4-2 illustrates

these DAGs. Note that by construction, the v-degree of 𝐷split is one less than that of 𝐷 because

the in-degree of node 𝑎𝑦 has been reduced by 1.

We need the following intermediate result.

Claim: 𝜆(𝐷) = 𝜆aug(𝐷1).

Proof. Note that since 𝑎𝑦 is a leaf node in 𝐷, we have that 𝑣Ψ𝐷(𝑎𝑦) = 𝑣𝑦. Therefore, the

distribution 𝜆aug𝑦 is defined on the expanded universe 𝒩 ∪
{︀
𝑎′𝑦
}︀
with the weights of the products

in 𝒩 remaining the same as in 𝜆 and the weight 𝑣𝑦 assigned to product 𝑎′𝑦.

Now, for any ranking 𝜋 ∈ 𝑆𝐷 (including only products in set 𝒩 ), let 𝜎(𝜋) ⊂ 𝑆𝐷1 denote the

set of rankings of the products in the set 𝒩 ∪
{︀
𝑎′𝑦
}︀
that are consistent with 𝜋. By invoking [52,

Proposition A1.2], it holds that 𝜆(𝜋) =
∑︀

𝜎∈𝜎(𝜋) 𝜆
aug
𝑦 (𝜎). We can now write

𝜆aug𝑦 (𝐷1) =
∑︁

𝜎∈𝑆𝐷1

𝜆aug𝑦 (𝜎) =
∑︁
𝜋∈𝑆𝐷

∑︁
𝜎∈𝜎(𝜋)

𝜆aug𝑦 (𝜎) =
∑︁
𝜋∈𝑆𝐷

𝜆(𝜋) = 𝜆(𝐷).

Therefore, in order to establish that 𝜆aug𝑦 (𝐷split) ≤ 𝜆(𝐷), it is sufficient to show that 𝜆aug𝑦 (𝐷split) ≤

𝜆aug𝑦 (𝐷1). For that, consider the three DAGs 𝐼1, 𝐼2, and 𝐼3 (see Figure 4-3), defined over the set
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𝑎1

DAG 𝐷

⋯

DAG 𝐷1

⋯ ⋯
𝑎2

𝑎𝑦

𝑎𝑘−1

DAG  𝐷𝑠𝑝𝑙𝑖𝑡

𝑎𝑦
′

𝑎𝑦
′

𝑎𝑘⋯ 𝑎𝑘 𝑎1 𝑎2

𝑎𝑦

𝑎𝑘−1⋯ 𝑎𝑘 𝑎1 𝑎2

𝑎𝑦

𝑎𝑘−1⋯

Figure 4-2: Bottom parts of DAGs from Lemma 4.2.2.

DAG 𝐼1

⋯

𝑎𝑦

𝑎1 𝑎2

𝑎𝑦
′

DAG 𝐼2

⋯

𝑎𝑦

𝑎1 𝑎2

𝑎𝑦
′

DAG 𝐼3

⋯

𝑎𝑦

𝑎1 𝑎2

𝑎𝑦
′

Figure 4-3: Bottom parts of DAGs from Lemma 4.2.2.

of products in 𝒩 ∪
{︀
𝑎′𝑦
}︀
such that

𝐸𝐼1 = 𝐸𝐷1∪
{︀
(𝑎2, 𝑎

′
𝑦)
}︀
, 𝐸𝐼2 = 𝐸𝐷1∪

{︀
(𝑎′𝑦, 𝑎2)

}︀
, and 𝐸3 =

(︀
𝐸𝐷1∖{(𝑎2, 𝑎𝑦)}

)︀
∪
{︀
(𝑎𝑦, 𝑎2), (𝑎2, 𝑎

′
𝑦)
}︀
.

It is then follows by the definitions that

𝜆aug𝑦 (𝐷1) = 𝜆aug𝑦 (𝐼1) + 𝜆aug𝑦 (𝐼2)

𝜆aug𝑦 (𝐷split) = 𝜆aug𝑦 (𝐼1) + 𝜆aug𝑦 (𝐼3).

Thus, to show that 𝜆aug𝑦 (𝐷split) ≤ 𝜆aug𝑦 (𝐷1), it is sufficient to show that 𝜆aug𝑦 (𝐼3) ≤ 𝜆aug𝑦 (𝐼2).

To show that 𝜆aug𝑦 (𝐼3) ≤ 𝜆aug𝑦 (𝐼2), define the mapping ℎ : 𝐼3 → 𝐼2 such that for any 𝜎 ∈ 𝐼3,

which is of the form 𝜎 = (. . . , 𝑎1, . . . , 𝑎𝑦, . . . , 𝑎2, . . . , 𝑎
′
𝑦, . . . ), we map it to 𝜎′ in 𝐼2, of the form

𝜎′ = (. . . , 𝑎1, . . . , 𝑎
′
𝑦, . . . , 𝑎2, . . . , 𝑎𝑦, . . . ) obtained by swapping the positions of the products 𝑎𝑦

and 𝑎′𝑦. Now, it can be verified that the mapping ℎ(·) is an injection, i.e., ℎ(𝜎) ̸= ℎ(𝜎′) whenever

𝜎 ̸= 𝜎′. Then, since attraction parameters for nodes 𝑎𝑦 and 𝑎′𝑦 are the same, i.e., 𝑣𝑎𝑦 = 𝑣𝑎′𝑦 , it
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follows that for any 𝜎 ∈ 𝐼3, 𝜆aug𝑦 (𝜎) = 𝜆aug𝑦

(︀
ℎ(𝜎)

)︀
. As a result, we obtain

𝜆aug𝑦 (𝐼3) =
∑︁
𝜎∈𝐼3

𝜆aug𝑦 (𝜎) =
∑︁
𝜎∈𝐼3

𝜆aug𝑦 (ℎ(𝜎)) ≤
∑︁
𝜎′∈𝐼2

𝜆aug𝑦 (𝜎′) = 𝜆aug𝑦 (𝐼2), (4.5)

where the inequality holds because there could be additional rankings 𝜎′ ∈ 𝐼2 that do not have

a pre-image in 𝐼3 through ℎ(·). We have thus shown that 𝜆aug𝑦 (𝐷split) ≤ 𝜆aug𝑦 (𝐷1), which implies

that 𝜆aug𝑦 (𝐷split) ≤ 𝜆(𝐷).

The inequality in 𝜆aug𝑦 (𝐷split) ≤ 𝜆(𝐷) is strict when all the parameters under the MNL model

are positive. We establish this result by showing that there exists 𝜎′ ∈ 𝐼2 such that ℎ(𝜎) ̸= 𝜎′ for

all 𝜎 ∈ 𝐼3. It then follows that the inequality in (4.5) is strict, implying that 𝜆aug𝑦 (𝐷split) < 𝜆(𝐷).

Consider the ranking 𝜎′ = (. . . , 𝑎′𝑦, . . . , 𝑎1, . . . , 𝑎2, . . . , 𝑎𝑦, . . . ) such that 𝜎′ ∈ 𝐼2. As noted above,

any 𝜎 ∈ 𝐼3 is of the form 𝜎 = (. . . , 𝑎1, . . . , 𝑎𝑦, . . . , 𝑎2, . . . , 𝑎
′
𝑦, . . . ), so that it gets mapped to

ℎ(𝜎) = (. . . , 𝑎1, . . . , 𝑎
′
𝑦, . . . , 𝑎2, . . . , 𝑎𝑦, . . . ). Therefore, we have ℎ(𝜎)(𝑎1) < ℎ(𝜎)(𝑎′𝑦) for all 𝜎 ∈ 𝐼3,

whereas 𝜎′(𝑎1) > 𝜎′(𝑎′𝑦). Thus, we have that 𝜎′ ̸= ℎ(𝜎) for all 𝜎 ∈ 𝐼3, establishing the claim.

We are now left with showing that 𝜆̃aug𝑦 (𝐷split) = 𝜆̃(𝐷). Since the reachability weights 𝑣Ψ𝐷(𝑎)

for all 𝑎 ∈ 𝒩 under 𝜆, and 𝑣Ψ
𝐷split (𝑎) for all 𝑎 ∈ 𝒩 ∪

{︀
𝑎′𝑦
}︀
under 𝜆aug𝑦 , are equal by definition,

and the approximations 𝜆̃ and 𝜆̃aug𝑦 only depend on the reachability weights, then the equality

𝜆̃aug𝑦 (𝐷split) = 𝜆̃(𝐷) immediately follows.

We can now proceed to prove the results in Section 1.3.

Proof of Proposition 1.3.1

We show the result, 𝜆̃(𝐷) ≤ 𝜆(𝐷), by induction on the v-degree, 𝑘, of DAG 𝐷.

Base case: 𝑘 = 0. When 𝑘 = 0, DAG 𝐷 does not have any v-nodes. Then, 𝐷 is a forest of

directed trees each with a unique root. It follows from [52, Proposition 3.2] that 𝜆̃(𝐷) = 𝜆(𝐷) =∏︀
𝑎∈𝒩

𝑣𝑎∑︀
𝑎′∈Ψ𝐷(𝑎) 𝑣𝑎′

, establishing the base case.

Induction hypothesis: Suppose 𝜇̃(𝐷) ≤ 𝜇(𝐷) for any DAG 𝐷 with v-degree less than or equal to

𝑝, for some 𝑝 ≥ 0, for all distributions 𝜇 under the PL model.

Induction step: Assuming that the induction hypothesis is true, we prove the result for 𝑘 = 𝑝+1.

It is clear that there exists a v-node 𝑎𝑦 ∈ 𝒩 satisfying the conditions in Lemma 4.2.1, i.e., every

node in Ψ𝐷(𝑎𝑦) ∖ {𝑎𝑦} has at most one incoming edge and the subgraph 𝐷[𝑎𝑦], induced in 𝐷 by
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the set of nodes Ψ𝐷(𝑎𝑦) is a directed tree with unique root. As in Lemma 4.2.1, let 𝐷̄[𝑎𝑦] denote

the subgraph induced in 𝐷 by the set of nodes (𝒩 ∖Ψ𝐷(𝑎𝑦)) ∪ {𝑎𝑦}. Now consider

𝜆̃(𝐷) =
∏︁
𝑗∈𝒩

𝑣𝑗∑︀
𝑗′∈Ψ𝐷(𝑎𝑗)

𝑣𝑗′

=

(︃ ∏︁
𝑗∈Ψ𝐷(𝑎𝑦)

𝑣𝑗∑︀
𝑗′∈Ψ𝐷(𝑎𝑗)

𝑣𝑗′

)︃
·

(︃ ∏︁
𝑗∈𝒩∖Ψ𝐷(𝑎𝑦)

𝑣𝑗∑︀
𝑗′∈Ψ𝐷(𝑎𝑗)

𝑣𝑗′

)︃

= 𝜆̃(𝐷[𝑎𝑦]) ·

(︃ ∏︁
𝑗∈𝒩∖Ψ𝐷(𝑎𝑦),
𝑎𝑦∈Ψ𝐷(𝑎𝑗)

𝑣𝑗∑︀
𝑗′∈Ψ𝐷(𝑎𝑗)

𝑣𝑗′

)︃
·

(︃ ∏︁
𝑗∈𝒩∖Ψ𝐷(𝑎𝑦),
𝑎𝑦 /∈Ψ𝐷(𝑎𝑗)

𝑣𝑗∑︀
𝑗′∈Ψ𝐷(𝑎𝑗)

𝑣𝑗′

)︃

= 𝜆(𝐷[𝑎𝑦]) ·

(︃ ∏︁
𝑗∈𝒩∖Ψ𝐷(𝑎𝑦),
𝑎𝑦∈Ψ𝐷(𝑎𝑗)

𝑣𝑗
𝑣Ψ𝐷(𝑎𝑦) +

∑︀
𝑗′∈Ψ𝐷̄[𝑎𝑦 ](𝑎𝑗)∖{𝑎𝑦}

𝑣𝑗′

)︃
·

(︃ ∏︁
𝑗∈𝒩∖Ψ𝐷(𝑎𝑦),
𝑎𝑦 /∈Ψ𝐷(𝑎𝑗)

𝑣𝑗∑︀
𝑗′∈Ψ𝐷̄[𝑎𝑦 ](𝑎𝑗)

𝑣𝑗′

)︃

= 𝜆(𝐷[𝑎𝑦]) · 𝜆̃𝑦(𝐷̄[𝑎𝑦]),

where the fourth equation follows because 𝐷[𝑎𝑦] is a directed tree with a unique root, which

implies that 𝜆(𝐷[𝑎𝑦]) = 𝜆̃(𝐷[𝑎𝑦]) [52, Proposition 3.2], and the fact that Ψ𝐷(𝑎𝑗) = Ψ𝐷̄[𝑎𝑦 ](𝑎𝑗) for

all 𝑗 ∈ 𝒩 such that 𝑎𝑦 /∈ Ψ𝐷(𝑎𝑗). We now have

𝜆̃(𝐷) = 𝜆(𝐷[𝑎𝑦]) · 𝜆̃𝑦(𝐷̄[𝑎𝑦])

= 𝜆(𝐷[𝑎𝑦]) · 𝜆̃aug𝑦 (𝐷split
𝑦 )

≤ 𝜆(𝐷[𝑎𝑦]) · 𝜆aug𝑦 (𝐷split
𝑦 ) [by the ind. hypoth.]

≤ 𝜆(𝐷[𝑎𝑦]) · 𝜆𝑦(𝐷̄[𝑎𝑦]), with strict inequality if 𝑣𝑗 > 0 ∀ 𝑎𝑗 ∈ 𝒩 [by Lemma 4.2.2]

= 𝜆(𝐷) [by Lemma 4.2.1],

where the second equality holds by Lemma 4.2.2 taking 𝐷̄[𝑎𝑦] here as 𝐷 there, and 𝐷split
𝑦 here

as 𝐷split there; and the first inequality follows from induction hypothesis with distribution 𝜇 =

𝜆aug𝑦 since the v-degree of 𝐷split
𝑦 is equal to 𝑝. The result of the proposition now follows. �

Proof of Proposition 1.3.2

We must have that 𝑆𝐷 ⊂ 𝑆𝐷̄ since if 𝜎 is consistent with 𝐷, i.e., 𝜎 ∈ 𝑆𝐷, then it must also be
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consistent with 𝐷̄, i.e., 𝜎 ∈ 𝑆𝐷̄. It now follows that

𝜆(𝐷) =
∑︁
𝜎∈𝑆𝐷

𝜆(𝜎) ≤
∑︁
𝜎∈𝑆𝐷̄

𝜆(𝜎) = 𝜆(𝐷̄).

We now show that 𝜆(𝐷) < 𝜆(𝐷̄) when all the PL parameters are strictly positive by exhibiting

a ranking 𝜎 ∈ 𝑆𝐷̄ such that 𝜎 /∈ 𝑆𝐷. Suppose, by contradiction, we have that 𝑆𝐷̄ = 𝑆𝐷. Then,

any subgraph of 𝐷̄ which has less edges than 𝐷, is a transitive reduction of 𝐷, which results in

contradiction (recall that DAG 𝐷 is assumed to be its unique transitive reduction). As a result,

there is 𝜎 ∈ 𝑆𝐷̄ such that 𝜎 /∈ 𝑆𝐷. Then, we have

𝜆(𝐷̄)− 𝜆(𝐷) ≥ 𝜆(𝜎) > 0,

which holds because all the parameters of 𝜆 are positive. �

For the proof of Proposition 1.3.3, we recall here some notation. Let 𝑅(𝐷, 𝐷̄) denote the

ratio of the upper bound to the lower bound 𝜆(𝐷̄)/𝜆̃(𝐷), for any DAG 𝐷̄ ⊂ 𝐷. Let ℓ denote

the size of the largest reachability set in DAG 𝐷, i.e., ℓ = max𝑎∈𝒩 |Ψ𝐷(𝑎)|, and let 𝑝 denote the

number of nodes with v-nodes in their reachability sets, i.e., 𝑝 = |{𝑎 ∈ 𝒩 : ∃ v-node 𝑏 ∈ Ψ𝐷(𝑎)}|.

Further, let Δ := max𝑎 max𝑏∈Ψ𝐷(𝑎)∖{𝑎} 𝑣𝑏/𝑣𝑎 be the maximum ratio between the weights of nodes

within the same directed path in the DAG.

Proof of Proposition 1.3.3 Define Φ(𝐷) ⊂ 𝐷 as a DAG with each node having a unique

parent, such that for any distribution 𝜆, 𝜆(Φ(𝐷)) ≥ 𝜆(𝐷). Recall that 𝐷̄ is a forest of directed

trees obtained by deleting arcs from 𝐷 in order to break the v-nodes. Thus, set 𝐷̄ = Φ(𝐷) so

that each node has a unique parent, verifying

𝜆(𝐷̄) =
∏︁
𝑎∈𝒩

𝑣𝑎∑︀
𝑎𝑗∈ΨΦ(𝐷)(𝑎)

𝑣𝑗
.

In turn, 𝜆̃(𝐷) is the lower bound obtained by treating 𝐷 as a forest of directed trees with unique

root. That is,

𝜆̃(𝐷) =
∏︁
𝑎∈𝒩

𝑣𝑎∑︀
𝑎𝑗∈Ψ𝐷(𝑎) 𝑣𝑗

.
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We have from Propositions 1.3.1 and 1.3.2:

𝜆̃(𝐷) ≤ 𝜆(𝐷) ≤ 𝜆(𝐷̄). (4.6)

Then,

log𝑅(𝐷, 𝐷̄) = log
𝜆(𝐷̄)

𝜆̃(𝐷)
= log

(︃∏︁
𝑎∈𝒩

∑︀
𝑎𝑗∈Ψ𝐷(𝑎) 𝑣𝑗∑︀

𝑎𝑗∈ΨΦ(𝐷)(𝑎)
𝑣𝑗

)︃
Let ℱ𝒟 be the set of nodes in 𝐷 with more than one incoming edge. Continuing the sequence of

equalities above:

log𝑅(𝐷, 𝐷̄) = log

(︃∏︁
𝑎∈𝒩

∑︀
𝑎𝑗∈Ψ𝐷(𝑎) 𝑣𝑗∑︀

𝑎𝑗∈ΨΦ(𝐷)(𝑎)
𝑣𝑗

)︃
=
∑︁
𝑎∈𝒩

log

(︃ ∑︀
𝑎𝑗∈Ψ𝐷(𝑎) 𝑣𝑗∑︀

𝑎𝑗∈ΨΦ(𝐷)(𝑎)
𝑣𝑗

)︃

=
∑︁
𝑎∈𝒩

log

(︃
1 +

∑︀
𝑎𝑗∈Ψ𝐷(𝑎)∖ΨΦ(𝐷)(𝑎)

𝑣𝑗∑︀
𝑎𝑗∈ΨΦ(𝐷)(𝑎)

𝑣𝑗

)︃

=
∑︁
𝑎∈𝒩

I[ℱ𝐷 ∩Ψ𝐷(𝑎) ̸= ∅] · log

(︃
1 +

∑︀
𝑎𝑗∈Ψ𝐷(𝑎)∖ΨΦ(𝐷)(𝑎)

𝑣𝑗∑︀
𝑎𝑗∈ΨΦ(𝐷)(𝑎)

𝑣𝑗

)︃

≤
∑︁
𝑎∈𝒩

I[ℱ𝐷 ∩Ψ𝐷(𝑎) ̸= ∅] · log

(︃
1 +

∑︀
𝑎𝑗∈Ψ𝐷(𝑎)∖{𝑎} 𝑣𝑗

𝑣𝑎

)︃

=
∑︁
𝑎∈𝒩

I[ℱ𝐷 ∩Ψ𝐷(𝑎) ̸= ∅] · log

⎛⎝1 +
∑︁

𝑎𝑗∈Ψ𝐷(𝑎)∖{𝑎}

𝑣𝑗
𝑣𝑎

⎞⎠
≤
∑︁
𝑎∈𝒩

I[ℱ𝐷 ∩Ψ𝐷(𝑎) ̸= ∅] · log

⎛⎝1 +
∑︁

𝑎𝑗∈Ψ𝐷(𝑎)∖{𝑎}

Δ

⎞⎠
≤
∑︁
𝑎∈𝒩

I[ℱ𝐷 ∩Ψ𝐷(𝑎) ̸= ∅] · log(1 + ℓ ·Δ) ≤ 𝑝 · log(1 + ℓ ·Δ),

where the fourth equality follows since the surviving terms are the once where Ψ𝐷(𝑎)∖ΨΦ(𝐷)(𝑎) ̸=

∅, i.e., there are nodes in Ψ𝐷(𝑎) with more than one incoming edge; and the first inequality holds

because 𝑎 ∈ Ψ(𝑎), and we add terms in the numerator and take out terms from the denominator.

The last three inequalities follow from the definitions of Δ, ℓ, and 𝑝, respectively. From (4.6),
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we have that

0 ≤ lim
𝑛→∞

log
𝜆(𝐷)

𝜆̃(𝐷)
≤ lim

𝑛→∞
log𝑅(𝐷, 𝐷̄) ≤ lim

𝑛→∞
𝑝 · log(1 + ℓ ·Δ) ≤ lim

𝑛→∞
𝑛 · log(1 + 𝑛 ·Δ)

= lim
𝑛→∞

log(1 + 𝑛 ·Δ)
𝑛2·Δ
𝑛·Δ = lim

𝑛→∞
(Δ𝑛2) · log(1 + 𝑛 ·Δ)

1
𝑛·Δ = 0,

since as 𝑛→∞, it can be shown that 𝑛Δ ∈ 𝑜(𝑛−1) and 𝑛2Δ ∈ 𝑜(1). �
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Proof of Proposition 1.3.4

Recall that the merged DAG 𝐷 ⊎ 𝐶(𝑎𝑗, 𝑆) is obtained by taking the union of the graphs 𝐷 and

𝐶(𝑎𝑗, 𝑆). From the definitions of the bounds in (1.4), it must hold that

log
𝑓(𝑎𝑗, 𝑆,𝐷)

𝑓(𝑎𝑗, 𝑆,𝐷)
= log

(︃
𝜆(𝐷 ⊎ 𝐶(𝑎𝑗, 𝑆))
𝜆̃(𝐷 ⊎ 𝐶(𝑎𝑗, 𝑆))

· 𝜆(𝐷)

𝜆̃(𝐷)

)︃

= log

(︃
𝜆(𝐷 ⊎ 𝐶(𝑎𝑗, 𝑆))
𝜆̃(𝐷 ⊎ 𝐶(𝑎𝑗, 𝑆))

)︃
+ log

(︂
𝜆(𝐷)

𝜆̃(𝐷)

)︂
≤ 2 · 𝑝 · log(1 + ℓ ·Δ),

where the last inequality follows from Proposition 1.3.3. As argued in the proof of Proposi-

tion 1.3.3, 𝑝 log(1 + ℓΔ)→ 0 as 𝑛→∞ when Δ𝑛2 ∈ 𝑜(1), as 𝑛→∞. �

4.3 Heuristic for preference graph decycling

In Section 1.2.3, we formulated MILP (1.2) for preference graph decycling (Phase 3) in the DAG

construction process. Since solving the MILP to optimality could be challenging (e.g., if we

have thousands of products or brands), we propose a tractable, greedy heuristic to decycle the

preference graph.

Let 𝐹𝑖𝑛𝑑𝑃𝑎𝑡ℎ(𝑎𝑘, 𝑎𝑗, 𝐺) denote the output of Dijkstra’s algorithm on a directed graph 𝐺,

which finds the shortest path between nodes 𝑎𝑘 and 𝑎𝑗 and returns the set of weighted edges

comprising this path (potentially, the empty set). The Dijkstra’s algorithm runs in 𝑂(|𝑉𝐺|2)

time, where 𝑉𝐺 is the set of nodes in 𝐺.

Taking advantage of the polynomial running time of Dijkstra’s, our heuristic proceeds as

follows: For a directed graph 𝐺, we run Dijkstra’s between all pair of nodes 𝑎𝑘 and 𝑎𝑗, in both

directions. In case both paths exist, then there is a cycle containing 𝑎𝑘 and 𝑎𝑗, and the edge with

minimum weight is removed. As a result, since there are 𝑂(|𝑉𝐺|2) pairs of nodes, the preference

graph decycling can be implemented with 𝑂(|𝑉𝐺|4) computational complexity. The steps are

described in Algorithm 3 below.

In order to validate the effectiveness of Algorithm 3, we compare empirical prediction results

on the actual sales dataset obtained from DAGs decycled via MIP (1.2) and the analogous results
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Algorithm 3 Preference graph 𝐺 decycling

1: procedure Decycle(𝐺) ◁ Where 𝐺 is a graph with set of nodes 𝑉𝐺 and set of weighted
edges 𝐸𝐺.

2: for 𝑎𝑘 in 𝑉𝐺 do
3: for 𝑎𝑗 in 𝑉𝐺 ∖ {𝑎𝑘} do
4: while 𝐹𝑖𝑛𝑑𝑃𝑎𝑡ℎ(𝑎𝑘, 𝑎𝑗, 𝐺) ̸= ∅ & 𝐹𝑖𝑛𝑑𝑃𝑎𝑡ℎ(𝑎𝑗, 𝑎𝑘, 𝐺) ̸= ∅ do
5: 𝐶𝑦𝑐𝑙𝑒← 𝐹𝑖𝑛𝑑𝑃𝑎𝑡ℎ(𝑎𝑘, 𝑎𝑗, 𝐺) ∪ 𝐹𝑖𝑛𝑑𝑃𝑎𝑡ℎ(𝑎𝑗, 𝑎𝑘, 𝐺)
6: Remove the edge (𝑎𝑥, 𝑎𝑦) with minimum weight in 𝐶𝑦𝑐𝑙𝑒 from the set 𝐸𝐺

7: return DAG 𝐷 = 𝐺

from DAGs decycled via Algorithm 3. A description of the sales data is provided in Section 1.4.1

in the main body of the thesis.

In Figure 4-4 (left panels), we observe that using MIP (1.2) we delete 6.27% fewer edges than

when using Algorithm 3 and obtain 0.4% denser DAGs on average across 27 product categories.

In the middle and right panels we represent the scatter plot over 27 product categories of the

average miss rate and 𝜒2 scores, respectively. It follows that by using MIP (1.2) we obtain 1.17%

lower miss rate and 2.75% lower 𝜒2 score than by using Algorithm 3. These results provide good

support for the use of the greedy heuristic as an alternative to the exact solution of MIP (1.2) in

cases where the number of products is large. We highlight here though that in all our experiments

reported in the main body of the thesis we used MIP (1.2) limited to a max time of 30 seconds,

and retaining the best feasible solution when optimality was not reached. According to Table 1.1,

the largest category contains 95 products in our case.

Figure 4-4: Comparison of the performance of heuristic algorithm 3 vs. MIP (1.2).
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4.4 Benchmark models

4.4.1 LC-MNL model

LC-MNL model captures heterogeneity among customers by allowing them to belong to 𝐾 dif-

ferent classes with some probability. Customers from class ℎ ∈ {1, .., 𝐾} make choices according

to the single class MNL model with a parameter value 𝛽0
ℎ𝑗𝑖𝑡

+𝐼𝑗𝑖𝑡𝛽ℎ𝑗𝑖𝑡 of product 𝑗𝑖𝑡 ∈ {1, 2, ..., 𝑛},

where 𝐼𝑗𝑖𝑡 = 1 if product 𝑗𝑖𝑡 is under promotion at time 𝑡 for individual 𝑖, and 0 otherwise. A

prior probability of a customer to belong to the class ℎ is 𝛾ℎ ≥ 0 such that
∑︀𝐾

ℎ=1 𝛾ℎ = 1. The

regularized maximum likelihood problem under 𝐾 class LC-MNL model can be formulated as

follows:

max
𝛽,𝛾 : 𝛽0

ℎ1=0,ℎ∈[𝐾]

𝑚∑︁
𝑖=1

log

(︃
𝐾∑︁

ℎ=1

𝛾ℎ

𝑇𝑖∏︁
𝑡=1

exp
(︀
𝛽0
ℎ𝑗𝑖𝑡

+ 𝐼𝑗𝑖𝑡𝛽ℎ𝑗𝑖𝑡
)︀∑︀

𝑎ℓ∈𝑆𝑖𝑡
exp(𝛽0

ℎℓ + 𝐼ℓ𝑖𝑡𝛽ℎℓ)

)︃
− 𝛼

𝐾∑︁
ℎ=1

(
⃦⃦
𝛽0
ℎ

⃦⃦
1
+ ‖𝛽ℎ‖1)

When the value of 𝛼 is fixed and𝐾 = 1, it can be shown that this optimization problem is globally

concave and therefore can be solved efficiently [92]. Note that we tuned the value of 𝛼 by 5-fold

cross-validation. Since the problem is nonconcave for 𝐾 > 1, the EM technique is used to fit the

model (see Appendix A2.1.1 in [52]). Specifically, we initialize the EM with a random allocation

of customers to one of the 𝐾 classes, resulting in an initial allocation 𝒟1,𝒟2, . . . ,𝒟𝐾 , which

form a partition of the collection of all the customers. Then, we set 𝛾
(0)
ℎ = |𝒟ℎ|/

(︀∑︀𝐾
𝑑=1 |𝒟𝑑|

)︀
.

In order to get a parameter vector (𝛽
(0)
ℎ ,𝛽ℎ), we fit a single class MNL model to each subset of

customers. Based on each customer 𝑖’s purchase history (𝑎𝑗𝑖𝑡 , 𝑆𝑖𝑡) for 1 ≤ 𝑡 ≤ 𝑇𝑖, we can estimate

their posterior membership probabilities ∀ ℎ ∈ {1, .., 𝐾}:

𝛾𝑖ℎ =

𝛾ℎ
∏︀

𝑡∈𝑇𝑖

[︃
exp
(︀
𝛽0
ℎ𝑗𝑖𝑡

+ 𝐼𝑗𝑖𝑡𝛽ℎ𝑗𝑖𝑡
)︀
/
(︁∑︀

𝑎ℓ∈𝑆𝑖𝑡
exp(𝛽0

ℎℓ + 𝐼ℓ𝑖𝑡𝛽ℎℓ)
)︁]︃

∑︀𝐾
𝑑=1 𝛾𝑑

∏︀
𝑡∈𝑇𝑖

[︃
exp
(︀
𝛽0
𝑑𝑗𝑖𝑡

+ 𝐼𝑗𝑖𝑡𝛽𝑑𝑗𝑖𝑡
)︀
/
(︁∑︀

𝑎ℓ∈𝑆𝑖𝑡
exp(𝛽0

ℎℓ + 𝐼ℓ𝑖𝑡𝛽ℎℓ)
)︁]︃ ,

and the prediction can be made as follows:

𝑓(𝑗𝑖𝑡, 𝑆𝑖𝑡) =
𝐾∑︁

ℎ=1

𝛾𝑖ℎ
exp
(︀
𝛽0
ℎ𝑗𝑖𝑡

+ 𝐼𝑗𝑖𝑡𝛽ℎ𝑗𝑖𝑡
)︀∑︀

𝑎ℓ∈𝑆𝑖𝑡
exp(𝛽0

ℎℓ + 𝐼ℓ𝑖𝑡𝛽ℎℓ)
,
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where 𝑓(𝑗𝑖𝑡, 𝑆𝑖𝑡) is a probability to choose an item 𝑗𝑖𝑡 from the offer set 𝑆𝑖𝑡.

4.4.2 RPL model

In this model, we assume that 𝛽 is sampled from multivariate normal distribution, i.e, 𝛽 ∼

𝑁(𝜇,Σ), where 𝜇 is the mean, and Σ is the covariance matrix, which is assumed to be diagonal.

Then the log-likelihood of the sequence of purchases of all individuals 𝑖 ∈ {1, ..,𝑚} for 𝑡 =

{1, ..., 𝑇𝑖} is equal to
∑︀𝑚

𝑖=1 log

(︂∫︀ +∞
−∞

[︁∏︀𝑇𝑖

𝑡=1

exp(𝛽0
𝑗𝑖𝑡

+𝐼𝑗𝑖𝑡𝛽𝑗𝑖𝑡)∑︀
𝑎ℓ∈𝑆𝑖𝑡

exp(𝛽0
ℓ+𝐼ℓ𝑖𝑡𝛽ℓ)

]︁
𝜑(𝛽)𝑑𝛽

)︂
such that 𝛽0

𝑗𝑖𝑡
+ 𝐼𝑗𝑖𝑡𝛽𝑗𝑖𝑡

is a parameter value of product 𝑗𝑖𝑡 ∈ {1, 2, ..., 𝑛}, where 𝐼𝑗𝑖𝑡 = 1 if product 𝑗𝑖𝑡 is under promotion

at time 𝑡 for individual 𝑖, and 0 otherwise. Model parameters are estimated through maximum

simulated likelihood estimation (MSLE) where we use the simulated probabilities to approximate

the following log-likelihood function:

max
𝜇,Σ: 𝜇1=0

𝑚∑︁
𝑖=1

log

(︃∫︁ +∞

−∞

[︁ 𝑇𝑖∏︁
𝑡=1

exp
(︀
𝛽0𝑟
𝑗𝑖𝑡

+ 𝐼𝑗𝑖𝑡𝛽
𝑟
𝑗𝑖𝑡

)︀∑︀
𝑎ℓ∈𝑆𝑖𝑡

exp(𝛽0𝑟
ℓ + 𝐼ℓ𝑖𝑡𝛽

𝑟
ℓ )

]︁
𝜑(𝛽)𝑑𝛽

)︃
,

where for any random draw 𝑟 = 1, 2..., 𝑅 of a random vector 𝜉𝑟, that is sampled as 2𝑛−dimensional

multivariate standard normal, we have that 𝛽𝑟
ℓ = 𝜇ℓ + 𝜉𝑟ℓ𝜎ℓ, for any ℓ = 1, 2, ..., 𝑛, and 𝛽0𝑟

ℓ−𝑛 =

𝜇ℓ + 𝜉𝑟ℓ𝜎ℓ, ℓ = 𝑛 + 1, 𝑛 + 2, ..., 2𝑛. The above optimization problem is nonconcave. To solve the

problem, we choose R = 400 and use a general non-linear solver to converge to a stationary point

(see Appendix A2.1.1 in [52]). Then we make predictions as follows:

𝑓(𝑗𝑖𝑡, 𝑆𝑖𝑡) =

∫︁
exp
(︀
𝛽0
𝑗𝑖𝑡

+ 𝐼𝑗𝑖𝑡𝛽𝑗𝑖𝑡
)︀∑︀

𝑎ℓ∈𝑆𝑖𝑡
exp(𝛽0

ℓ + 𝐼ℓ𝑖𝑡𝛽ℓ)
𝜑(𝛽|ℋ𝑖;𝜇,Σ)𝑑𝛽,

where 𝑓(𝑗𝑖𝑡, 𝑆𝑖𝑡) is the probability to choose an item 𝑗𝑖𝑡 from the offer set 𝑆𝑖𝑡 for individual 𝑖,

𝜑(𝛽|ℋ𝑖;𝜇,Σ) is the posterior distribution of parameter vector 𝛽 for customer 𝑖, conditioning on

population prior and observed choices of customer 𝑖, i.e., ℋ𝑖 = {(𝑎𝑗𝑖𝑡 , 𝑆𝑖𝑡) : 1 ≤ 𝑡 ≤ 𝑇𝑖}.

4.5 Evaluation of analytical bounds

In this section, we focus on the PO-MNL Promotion model and illustrate the behavior and

quality of the bounds proposed in Section 1.3.
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4.5.1 Bounds on the probability of a DAG

The presence of v-nodes (i.e., nodes with more than one incoming edge) in DAGs of individuals

complicates the maximum likelihood estimation of parameter values under PO-based choice

models. The left panels in Figure 4-5 illustrate that individuals without cycles in their preference

graph have on average 17.09 v-nodes in their DAG whereas individuals with cycles in their

preference graph have on average 19.93 v-nodes in their DAG.

A tractable approximation of the likelihood of a DAG 𝐷 is given by

𝜆̃(𝐷) =
∏︁
𝑎𝑗∈𝒩

𝜐𝑗∑︀
𝑎𝑘∈Ψ𝐷(𝑎𝑗)

𝜐𝑘
,

where 𝜐𝑗 = exp(𝛽𝑗), ∀ 𝑎𝑗 ∈ 𝒩 and Ψ𝐷(𝑎𝑗) denotes the reachability function such that Ψ𝐷(𝑎𝑗) =

{𝑎𝑘 : 𝑎𝑘 is reachable from 𝑎𝑗 in 𝐷}. Note that Ψ𝐷(𝑎𝑗) is always nonempty, since we assume that

each node 𝑎𝑗 is reachable from itself. The approximation 𝜆̃(𝐷) of the likelihood of DAG 𝐷 is

exact when 𝐷 is a forest of directed trees, each with a unique root. We show in Proposition 1.3.1

that 𝜆̃(𝐷) is a lower bound for the likelihood of DAG 𝐷.

Next, in order to find the upper bound approximation of DAG 𝐷 likelihood, let us denote 𝐷̄

the DAG obtained from 𝐷 where for every node with more than one incoming edge we delete

all the incoming edges but one. Instead of deleting an arbitrary set of edges, we can determine

edges to delete to make the approximation as tight as possible. Finding the tightest upper bound

is challenging in general. In order to ease the computational process, we develop a greedy-type

heuristic Φ(𝐷) (see Algorithm 4) to obtain a tight upper bound of DAG 𝐷 likelihood, i.e.,

𝐷̄ = Φ(𝐷) and 𝜆(𝐷) ≤ 𝜆(𝐷̄).

For a collection of panel data represented by𝑋 and a given set of parameters 𝛽, let logℒ(𝑋,𝛽)

denote the upper bound approximation of the log-likelihood function under PO-MNL Promotion

model defined as logℒ(𝑋,𝛽) =
∑︀𝑚

𝑖=1 log 𝜆(𝐷̄𝑖). Then, letting 𝛽* be the solution to the maxi-

mization problem of the upper bound of the likelihood function, i.e., 𝛽* = argmax
𝛽

logℒ(𝑋,𝛽),

we have that the maximum value of the exact log-likelihood function logℒ(𝑋,𝛽*) satisfies:

logℒ(𝑋,𝛽*) ≤ logℒ(𝑋,𝛽*) ≤ logℒ(𝑋,𝛽*).
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Figure 4-5: Analysis of bounds for the probability of a DAG.

Similarly, let logℒ(𝑋,𝛽) =
∑︀𝑚

𝑖=1 log 𝜆̃(𝐷𝑖) denote the lower bound approximation of the log-

likelihood function under PO-MNL Promotion model, with optimal values 𝛽*. Then,

logℒ(𝑋,𝛽*) ≤ logℒ(𝑋,𝛽*) ≤ logℒ(𝑋,𝛽*).
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Algorithm 4 DAG 𝐷 transformation to find its upper bound likelihood

1: procedure Φ(𝐷), ◁ where Φ(𝐷) is the DAG with each node having a unique parent s.t.
𝜆(Φ(𝐷)) ≥ 𝜆(𝐷)

2: 𝐴← ℱ𝐷 ◁ ℱ𝐷 is the set of nodes in 𝐷 with more than one incoming edge
3: for 𝑎𝑖 in ℱ𝐷 do
4: 𝐷′ is obtained from 𝐷: 𝑉𝐷′ = 𝑉𝐷, and 𝐸𝐷′ = 𝐸𝐷 ∖𝐵𝑖, ◁ where 𝐵𝑖 is the set of incoming edges into

node 𝑎𝑖
5: 𝐷 ← 𝐷′

6: while 𝐴 ̸= ∅ : do
7: (𝑎𝑥, 𝑎𝑦) = argmin

(𝑎𝑖,𝑎𝑗)∈𝐵𝑖

𝜆(𝐷′) s.t. 𝐷′: 𝑉𝐷′ = 𝑉𝐷, 𝐸𝐷′ = 𝐸𝐷 ∪ (𝑎𝑖, 𝑎𝑗) and 𝑎𝑗 ∈ 𝐴

8: 𝐷 ← 𝐷′

9: 𝐴← 𝐴 ∖ {𝑎𝑦}
10: return DAG 𝐷̄ = Φ(𝐷)

A natural question that arises is about the size of the gap between both easy-to-compute

bounds (lower and upper). The middle column of the panels in Figure 4-5 illustrates that the

upper bound of the log-likelihood function (i.e., logℒ(𝑋,𝛽)) is higher than the lower bound of

the log-likelihood function (i.e., logℒ(𝑋,𝛽)) by 4.72% for individuals without cycles in their

preference graph, and by 6.79% for individuals with cycles in their preference graph, on average

across 27 product categories. This observation provides good support to use any of the bounds

as an approximation for the estimation problem under the exact likelihood of the DAGs. In

particular, we used the lower bound logℒ(𝑋,𝛽*).

4.5.2 Bounds on the probability of purchase

Next, we illustrate the behavior and quality of the bounds we have developed for posterior

probabilities of purchase when customers make choices consistently with their partial orders.

In particular, we propose the approximate probability of choosing product 𝑎𝑗 from offer set 𝑆

assuming that the sampled preference list is consistent with DAG 𝐷:

𝑓(𝑎𝑗, 𝑆,𝐷) =

⎧⎪⎨⎪⎩
𝜆̃(𝐷⊎𝐶(𝑎𝑗 ,𝑆))

𝜆̃(𝐷)
, if 𝑎𝑗 ∈ ℎ𝐷(𝑆),

0, otherwise.

Letting 𝑓(𝑎𝑗, 𝑆,𝐷) denote the lower bound of the purchase probability and 𝑓(𝑎𝑗, 𝑆,𝐷) denote

the upper bound of the purchase probability such that 𝑓(𝑎𝑗, 𝑆,𝐷) =
𝜆̃(𝐷⊎𝐶(𝑎𝑗 ,𝑆))

𝜆(𝐷)
if 𝑎𝑗 ∈ ℎ𝐷(𝑆)

and 0, otherwise; 𝑓(𝑎𝑗, 𝑆,𝐷) =
𝜆(𝐷⊎𝐶(𝑎𝑗 ,𝑆))

𝜆̃(𝐷)
if 𝑎𝑗 ∈ ℎ𝐷(𝑆), and 0, otherwise; we have the following
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inequalities (see Corollary 1.3.1 in Section 1.3):

𝑓(𝑎𝑗, 𝑆,𝐷) ≤ 𝑓(𝑎𝑗, 𝑆,𝐷) ≤ 𝑓(𝑎𝑗, 𝑆,𝐷),

and for the exact and hard-to-compute probability of purchase 𝑓(𝑎𝑗, 𝑆,𝐷),

𝑓(𝑎𝑗, 𝑆,𝐷) ≤ 𝑓(𝑎𝑗, 𝑆,𝐷) ≤ 𝑓(𝑎𝑗, 𝑆,𝐷).

The right column of Figure 4-5 illustrates that the percentage of transactions when the prediction

of the item to be chosen is made using the upper bound posterior probability of purchase, i.e.,

𝑓(𝑎𝑗, 𝑆,𝐷), is different from the prediction of the item to be chosen using the lower bound

posterior probability of purchase, i.e., 𝑓(𝑎𝑗, 𝑆,𝐷), in only 4.04% of the instances for individuals

without cycles in their preference graph, and in only 1.79% of the instances for individuals with

cycles in their preference graph. In both cases, our prediction is the item with the highest

probability of being purchased. This empirical observation provides good support for the use

of 𝑓(𝑎𝑗, 𝑆,𝐷) as a proxy for the true and hard-to-compute probability of purchase 𝑓(𝑎𝑗, 𝑆,𝐷).

In our reported results in Section 1.4 we use the following tractable formula to compute the

posterior probabilities of purchase:

𝑓(𝑎𝑗, 𝑆,𝐷) =

⎧⎪⎨⎪⎩
𝑣Ψ𝐷(𝑎𝑗)∑︀

𝑎𝑘∈ℎ𝐷(𝑆) 𝑣Ψ𝐷(𝑎𝑘)
, if 𝑎𝑗 ∈ ℎ𝐷(𝑆),

0, otherwise.

This expression is intended to be a good approximation for the alternative approximation 𝑓(𝑎𝑗, 𝑆,𝐷),

which we already know is a good approximation for the exact 𝑓(𝑎𝑗, 𝑆,𝐷). We verify this in Fig-

ure 4-6. Therein, we compare the choice prediction results made with 𝑓(𝑎𝑗, 𝑆,𝐷) vs. the choice

prediction results made with 𝑓(𝑎𝑗, 𝑆,𝐷) for individuals with and without cycles under “chi-

square” score and miss rate (see description of the metrics in Section 1.4.3). For all the panels

in Figure 4-6, the average MAE (Mean Absolute Error) is below 0.5%, which indicates that the

posterior probability approximation 𝑓(𝑎𝑗, 𝑆,𝐷) is very close to the posterior probability based

on the lower bound of the DAG likelihood 𝑓(𝑎𝑗, 𝑆,𝐷) in terms of predictive performance.
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Figure 4-6: Comparison of approximations for purchase probabilities.

4.6 Optimization of personalized promotions

We now show that the set of constraints (1.16)–(1.19) ensures that 𝑝’s are normalized attraction

values. Recall that 𝑧𝑗 = 1 for all products 𝑎𝑗 in the set ℎ𝐷(𝑆(𝑦)) of heads in the subgraph of the

transitive closure of 𝐷 restricted to the set 𝑆(𝑦).

Lemma 4.6.1. Suppose (0 ≤ 𝑝𝑗 ≤ 1: 𝑎𝑗 ∈ 𝑆𝒜) satisfy (1.16)–(1.19), then

𝑝𝑗 =

⎧⎪⎨⎪⎩
0, if 𝑧𝑗 = 0,

𝑣Ψ𝐷(𝑎𝑗)

1+
∑︀

𝑘 : 𝑎𝑘∈𝑆𝒜
𝑣Ψ𝐷(𝑎𝑘)

, if 𝑧𝑗 = 1.
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Proof. Proof: To simplify notation, let 𝑤𝑗 denote 𝑣Ψ𝐷(𝑎𝑗) for each 𝑎𝑗 ∈ 𝑆𝒜. For convenience, we

reproduce the set of constraints (1.16)–(1.19) below:

𝑝𝑗 ≤ 𝑧𝑗 ∀ 𝑎𝑗 ∈ 𝑆𝒜, (4.7)

𝑝0 +
∑︁

𝑗 : 𝑎𝑗∈𝑆𝒜

𝑝𝑗 = 1, (4.8)

0 ≤ 𝑝𝑗 ≤ 𝑤𝑗𝑝0, ∀ 𝑎𝑗 ∈ 𝑆𝒜 (4.9)

𝑝0 + 𝑧𝑗 − 1 ≤ 𝑝𝑗/𝑤𝑗 ∀ 𝑎𝑗 ∈ 𝑆𝒜. (4.10)

Let 𝑆 denote the set {𝑎𝑗 : 𝑧𝑗 = 1}, consisting of all the product indices such that 𝑧𝑗 = 1. It

immediately follows from (4.7) that 𝑝𝑗 = 0 for all 𝑎𝑗 ∈ 𝑆𝒜 ∖ 𝑆 (since 𝑧𝑗 = 0 therein). Then, for

all 𝑎𝑗 ∈ 𝑆𝒜 ∖ 𝑆, (4.9) trivially holds and (4.10) reduces to 𝑝0 ≤ 1 (which also trivially holds).

Now, for any 𝑗 such that 𝑎𝑗 ∈ 𝑆 (and hence, 𝑧𝑗 = 1), we have from (4.9) and (4.10) that

0 ≤ 𝑝𝑗 ≤ 𝑤𝑗𝑝0 and 𝑝0 ≤ 𝑝𝑗/𝑤𝑗.

It thus follows that 𝑝𝑗 = 𝑝0𝑤𝑗 for all 𝑎𝑗 ∈ 𝑆. We now obtain from (4.8) that

𝑝0 +
∑︁

𝑎𝑗∈𝑆𝒜

𝑝𝑗 = 1 =⇒ 𝑝0 +
∑︁
𝑎𝑗∈𝑆

𝑝𝑗 = 1 =⇒ 𝑝0 +
∑︁
𝑎𝑗∈𝑆

𝑝0𝑤𝑗 = 1 =⇒ 𝑝0 = 1/

⎛⎝1 +
∑︁
𝑎𝑗∈𝑆

𝑤𝑗

⎞⎠ ,

where the first implication follows because 𝑝𝑗 = 0 for all 𝑎𝑗 ∈ 𝑆𝒜 ∖ 𝑆 and the second implication

follows because 𝑝𝑗 = 𝑝0𝑤𝑗 for all 𝑎𝑗 ∈ 𝑆. Since 𝑤𝑗 > 0 for all 𝑎𝑗, it follows that 𝑝0 ≤ 1, as needed.

We have thus obtained that

𝑝𝑗 = 0 for all 𝑎𝑗 ∈ 𝑆𝒜 ∖ 𝑆 and 𝑝𝑗 = 𝑤𝑗𝑝0 = 𝑤𝑗/

(︃
1 +

∑︁
𝑎𝑘∈𝑆

𝑤𝑘

)︃
for all 𝑎𝑗 ∈ 𝑆.

In other words, we have that 𝑝𝑗 = 𝑤𝑗𝑧𝑗/
(︀
1 +

∑︀
𝑎𝑘∈𝑆𝒜

𝑤𝑘𝑧𝑘
)︀
, which follows from the definition

of 𝑆. The result of the lemma now holds.
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Chapter 5

Proofs and Supplementary Materials

for Chapter 2

5.1 Preliminaries on consider-then-choose models

For completeness, we summarize the relevant notation from Chapter 2 and also introduce ad-

ditional notation. We consider a universe 𝑁 of 𝑛 products {𝑎1, 𝑎2, . . . , 𝑎𝑛}. We let 𝑎0 denote

the ‘no-purchase’ or the ‘outside’ option. A customer is presented with a subset 𝑆 ⊆ 𝑁 of

products and the customer chooses either one of the products in 𝑆 or the outside option 𝑎0.

We let P𝑗(𝑆) denote the probability that a customer chooses product 𝑎𝑗 ∈ 𝑆 and P0(𝑆) the

probability that the customer chooses the outside option. We use 𝑆+ to denote the set 𝑆 ∪{𝑎0}.

Let 𝜆 : 2𝑁 → [0, 1] define a distribution over consideration sets such that
∑︀

𝐶⊆𝑁 𝜆(𝐶) = 1. The

preference relation ≻ specifies a rank ordering 𝜎 over 𝑛+ 1 items which consist of the products

in 𝑁 plus ‘no-purchase’ option 𝑎0 with 𝜎(𝑎𝑖) denoting the preference rank of product 𝑎𝑖. The

lower the rank of the product, the higher the preference, so that a customer’s ranking 𝜎 indicates

that product 𝑎 is preferred to product 𝑏 if and only if 𝜎(𝑎) < 𝜎(𝑏), or equivalently 𝑎 ≻𝜎 𝑏. We

assume that there is a distribution 𝜇 : S𝑛 → [0, 1] over S𝑛, which is the set of all full rankings

or permutations of products in 𝑁+ with cardinality (𝑛+ 1)!.

To simplify the exposition, we also let 𝑋̄ := 𝑁 ∖𝑋, 𝑋+ := 𝑋∪{𝑎0}, and P𝑖(𝑋) = Pr(𝑎𝑖|𝑋+).

Let ⟨𝑆⟩ denote the power set of 𝑆, i.e., ⟨𝑆⟩ = 2𝑆, and let 𝐴⊎𝐵 denote {𝑎∪ 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} for

any sets 𝐴,𝐵.
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5.2 Proofs of technical results

Proof. of Proposition 2.2.1: First, we argue that GCC class of models describing customer choice

behavior is consistent with RUM. Indeed, it is straightforward to verify that GCC choice model

with underlying preference order 𝜎 is equivalent to the rank-based (i.e., RUM) model where all

the preference lists are obtained from a common permutation 𝜎. In particular, consider the RUM

model with the probability over rankings 𝜇 such that ∀ 𝐶 ⊆ 𝑁 , 𝜇(𝜎[𝐶]) = 𝜆(𝐶), and 𝜇(𝑋) = 0

for 𝑋 /∈ {𝜎[𝐶] : 𝐶 ⊆ 𝑁}, where 𝜎[𝐶] is the full preference order with items in 𝐶 at the top

positions consistently with 𝜎 (e.g., the most preferred item in 𝐶 is placed on the top position, the

worst preferred item in 𝐶 is placed on k-𝑡ℎ position, where 𝑘 is the cardinality of 𝐶) followed by

the items that are not in 𝐶. It’s easy to verify that the RUM with the defined distribution over

rankings 𝜇 results into the same probabilities of purchases as GCC model. Then, it remains to

show that RUM model class is not a specific case of GCC model class. To this end, we provide

a particular example of RUM model class resulting in customers’ choice frequencies that are

inconsistent with GCC choice rule.

Let 𝑁 denote the universe of two items plus the “no-purchase” option 𝑎0, i.e., 𝑁 = {𝑎1, 𝑎2}.

Then let 𝜇 : L3 → [0, 1] denote a specification of RUM class such that customers sample either

preference list 𝜎1 = {𝑎1, 𝑎2, 𝑎0} with probability 𝜇1 ∈ (0, 1) or preference list 𝜎2 = {𝑎2, 𝑎1, 𝑎0}

with probability 1 − 𝜇1. Consequently, probability distribution function 𝜇 over preference lists

results in the following choice frequencies:

P1({𝑎1, 𝑎2}) = 𝜇1, P1({𝑎1}) = 1⇒ 𝑎2 is preferred to 𝑎1, by GCC definition,

P2({𝑎1, 𝑎2}) = 1− 𝜇1, P2({𝑎2}) = 1⇒ 𝑎1 is preferred to 𝑎2, by GCC definition.

These choice frequencies are inconsistent with GCC model class, which only allows a unique

preference order of products, i.e., according to GCC choice rule either product 𝑎1 is preferred to

product 𝑎2 or product 𝑎2 is preferred to product 𝑎1.

Lemma 5.2.1. For any sets 𝑍 ⊆ 𝑁 and 𝑌 ⊆ 𝑍, and the function 𝑓 : 2𝑁 → R, we have

∑︁
𝑃⊆𝑌

∑︁
𝑋⊆𝑃

(−1)|𝑃 |−|𝑋| · 𝑓(𝑍 ∖𝑋) = 𝑓(𝑍 ∖ 𝑌 ). (5.1)
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Proof. Proof: First consider the inclusion-exclusion principle stated by [37] in the following form.

Let 𝑁 be a finite set and 𝑔 : 2𝑁 → R be a real-valued function defined on the subsets of 𝑁 .

Define the function ℎ : 2𝑁 → R by ℎ(𝑋) :=
∑︀

𝑌⊆𝑋 𝑔(𝑌 ), then 𝑔(𝑋) :=
∑︀

𝑌⊆𝑋(−1)|𝑋|−|𝑌 |ℎ(𝑌 ).

Then we show that the lemma follows from the stated above inclusion-exclusion principle.

Let 𝑔(𝑋) := 𝑓(𝑍 ∖𝑋), and ℎ(𝑃 ) := (−1)|𝑃 |∑︀
𝑋⊆𝑃 (−1)|𝑋| · 𝑔(𝑋), which implies that

ℎ(𝑃 ) · (−1)|𝑃 | =
∑︁
𝑋⊆𝑃

(−1)|𝑋| · 𝑔(𝑋), by invoking the inclusion-exclusion principle we obtain that

(−1)−|𝑌 | · 𝑔(𝑌 ) =
∑︁
𝑃⊆𝑌

(−1)|𝑌 |−|𝑃 | · ℎ(𝑃 ) · (−1)|𝑃 |, which implies that

𝑓(𝑍 ∖ 𝑌 ) = 𝑔(𝑌 ) =
∑︁
𝑃⊆𝑌

ℎ(𝑃 ) =
∑︁
𝑃⊆𝑌

(−1)|𝑃 |
∑︁
𝑋⊆𝑃

(−1)|𝑋| · 𝑔(𝑋) =
∑︁
𝑃⊆𝑌

∑︁
𝑋⊆𝑃

(−1)|𝑃 |−|𝑋| · 𝑔(𝑋)

=
∑︁
𝑃⊆𝑌

∑︁
𝑋⊆𝑃

(−1)|𝑃 |−|𝑋| · 𝑓(𝑍 ∖𝑋).

Lemma 5.2.2. The combinatorial identity below is valid

−
min(𝑟,𝑤)∑︁

𝛽=0

𝒞𝑤𝛽 ·
[︂ 𝑢−𝛽∑︁

𝛼=𝑟+1−𝛽

(−1)𝛼𝒞𝑢−𝛽
𝛼

]︂
=

⎧⎪⎨⎪⎩1, if 𝑤 = 𝑢,

0, if 𝑤 < 𝑢,

(5.2)

where 𝑟 < 𝑤 when 𝑤 = 𝑢.

Proof. Proof: Let us consider two cases:

Case 1: 𝑤 = 𝑢. In this case 𝑟 < 𝑤 by invoking the assumptions of the lemma.

−
𝑟∑︁

𝛽=0

𝒞𝑤𝛽 ·
[︂ 𝑢−𝛽∑︁

𝛼=𝑟+1−𝛽

(−1)𝛼𝒞𝑢−𝛽
𝛼

]︂
= −

𝑟∑︁
𝛽=0

𝒞𝑢𝛽 ·
[︂ 𝑢−𝛽∑︁

𝛼=𝑟+1−𝛽

(−1)𝛼𝒞𝑢−𝛽
𝛼

]︂

= −
𝑟∑︁

𝛽=0

𝑢−𝛽∑︁
𝛼=𝑟+1−𝛽

(−1)𝛼 · 𝑢!

𝛼!𝛽!(𝑢− 𝛼− 𝛽)!
= 1,

where the last equality is proved by induction on 𝑠 = 𝑢− 𝑟:
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Base case: 𝑠 = 1.

−
𝑟∑︁

𝛽=0

𝑢−𝛽∑︁
𝛼=𝑟+1−𝛽

(−1)𝛼 · 𝑢!

𝛼!𝛽!(𝑢− 𝛼− 𝛽)!
= −

𝑢−1∑︁
𝛽=0

(−1)𝑢−𝛽𝒞𝑢𝛽 = (−1)𝑢+1 ·
𝑢−1∑︁
𝛽=0

(−1)𝛽𝒞𝑢𝛽

= (−1)𝑢+1 · ((1− 1)𝑢 − (−1)𝑢) = 1.

Induction hypothesis: 𝑠 = 𝑝. Induction step: 𝑠 = 𝑝+ 1.

−
𝑢−𝑝−1∑︁
𝛽=0

𝑢−𝛽∑︁
𝛼=𝑢−𝑝−𝛽

(−1)𝛼 · 𝑢!

𝛼!𝛽!(𝑢− 𝛼− 𝛽)!
[since 𝑟 = 𝑢− 𝑝− 1]

= −
𝑢−𝑝∑︁
𝛽=0

𝑢−𝛽∑︁
𝛼=𝑢−𝑝−𝛽

(−1)𝛼 · 𝑢!

𝛼!𝛽!(𝑢− 𝛼− 𝛽)!
+

𝑝∑︁
𝛼=0

(−1)𝛼 · 𝑢!

𝛼!(𝑢− 𝑝)!(𝑝− 𝛼)!

= −
𝑢−𝑝∑︁
𝛽=0

𝑢−𝛽∑︁
𝛼=𝑢−𝑝−𝛽

(−1)𝛼 · 𝑢!

𝛼!𝛽!(𝑢− 𝛼− 𝛽)!
+

𝑢!

𝑝!(𝑢− 𝑝)!
·

𝑝∑︁
𝛼=0

(−1)𝛼 · 𝑝!

𝛼!(𝑝− 𝛼)!

= −
𝑢−𝑝∑︁
𝛽=0

𝑢−𝛽∑︁
𝛼=𝑢−𝑝−𝛽

(−1)𝛼 · 𝑢!

𝛼!𝛽!(𝑢− 𝛼− 𝛽)!

= −
𝑢−𝑝∑︁
𝛽=0

𝑢−𝛽∑︁
𝛼=𝑢−𝑝+1−𝛽

(−1)𝛼 · 𝑢!

𝛼!𝛽!(𝑢− 𝛼− 𝛽)!
−

𝑢−𝑝∑︁
𝛽=0

(−1)𝑢−𝑝−𝛽 · 𝑢!

(𝑢− 𝑝− 𝛽)!𝛽!𝑝!

= 1−
𝑢−𝑝∑︁
𝛽=0

(−1)𝑢−𝑝−𝛽 · 𝑢!

(𝑢− 𝑝− 𝛽)!𝛽!𝑝!
, [by induction hypothesis, 𝑟 = 𝑢− 𝑝]

= 1 + (−1)𝑢−𝑝−1 · 𝑢!

(𝑢− 𝑝)!
·
𝑢−𝑝∑︁
𝛽=0

(−1)𝛽 · (𝑢− 𝑝)!
(𝑢− 𝑝− 𝛽)!𝛽!

= 1.

Case 2: 𝑤 < 𝑢. the last equality is proved by induction on 𝑠 = 𝑢− 𝑟:

Base case: 𝑠 = 1. Then 𝑟 = 𝑢− 1 ≥ 𝑤, so that min(𝑟, 𝑤) = 𝑤. And we have that

−
min(𝑟,𝑤)∑︁

𝛽=0

𝒞𝑤𝛽 ·
[︂ 𝑢−𝛽∑︁

𝛼=𝑟+1−𝛽

(−1)𝛼𝒞𝑢−𝛽
𝛼

]︂
= −

𝑤∑︁
𝛽=0

𝒞𝑤𝛽 ·
[︂ 𝑢−𝛽∑︁

𝛼=𝑢−𝛽

(−1)𝛼𝒞𝑢−𝛽
𝛼

]︂

= (−1)1+𝑢

𝑤∑︁
𝛽=0

(−1)𝛽𝒞𝑤𝛽 = 0.
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Induction hypothesis: 𝑠 = 𝑝.

Induction step: 𝑠 = 𝑝+ 1.

Condition 1: 𝑢− 𝑝 > 𝑤. Then min(𝑢− 𝑝, 𝑤) = 𝑤 and min(𝑢− 𝑝− 1, 𝑤) = 𝑤. We have that

−
𝑤∑︁

𝛽=0

𝒞𝑤𝛽 ·
[︂ 𝑢−𝛽∑︁

𝛼=𝑟+1−𝛽

(−1)𝛼𝒞𝑢−𝛽
𝛼

]︂
= −

𝑤∑︁
𝛽=0

𝒞𝑤𝛽 ·
[︂ 𝑢−𝛽∑︁

𝛼=𝑢−𝑝−𝛽

(−1)𝛼𝒞𝑢−𝛽
𝛼

]︂
[since 𝑟 = 𝑢− 𝑝− 1]

= −
𝑤∑︁

𝛽=0

𝒞𝑤𝛽 ·
[︂ 𝑢−𝛽∑︁

𝛼=𝑢−𝑝+1−𝛽

(−1)𝛼𝒞𝑢−𝛽
𝛼

]︂
−

𝑤∑︁
𝛽=0

𝒞𝑤𝛽 · (−1)𝑢−𝑝−𝛽 · 𝒞𝑢−𝛽
𝑢−𝛽−𝑝

= −
𝑤∑︁

𝛽=0

𝒞𝑤𝛽 · (−1)𝑢−𝑝−𝛽 · 𝒞𝑢−𝛽
𝑢−𝛽−𝑝, [ by induction hypothesis, 𝑟 = 𝑢− 𝑝]

= (−1)1+𝑢−𝑝 ·
𝑤∑︁

𝛽=0

(−1)𝛽 · 𝒞𝑤𝛽 · 𝒞
𝑢−𝛽
𝑢−𝛽−𝑝 = (−1)1+𝑢−𝑝 · 𝑤!

𝑝!
·

𝑤∑︁
𝛽=0

(−1)𝛽 · (𝑢− 𝛽)!
𝛽!(𝑤 − 𝛽)!(𝑢− 𝑝− 𝛽)!

.

Now it is sufficient to show that
∑︀𝑤

𝛽=0(−1)𝛽 ·
(𝑢−𝛽)!

𝛽!(𝑤−𝛽)!(𝑢−𝑝−𝛽)!
= 0. We prove it by induction on 𝑝.

For 𝑝 = 0, it follows that
∑︀𝑤

𝛽=0(−1)𝛽 ·
(𝑢−𝛽)!

𝛽!(𝑤−𝛽)!(𝑢−𝑝−𝛽)!
=
∑︀𝑤

𝛽=0(−1)𝛽 ·
1

𝛽!(𝑤−𝛽)!
= 1

𝑤!

∑︀𝑤
𝛽=0(−1)𝛽 ·

𝒞𝑤𝛽 = 0. Assuming that the result holds for 𝑝 = 𝑚, we prove it for 𝑝 = 𝑚+ 1:

𝑤∑︁
𝛽=0

(−1)𝛽 · (𝑢− 𝛽)!
𝛽!(𝑤 − 𝛽)!(𝑢−𝑚− 1− 𝛽)!

=
𝑤∑︁

𝛽=0

(−1)𝛽 · (𝑢− 𝛽)!(𝑢−𝑚− 𝛽)
𝛽!(𝑤 − 𝛽)!(𝑢−𝑚− 𝛽)!

= (𝑢−𝑚) ·
𝑤∑︁

𝛽=0

(−1)𝛽 · (𝑢− 𝛽)!
𝛽!(𝑤 − 𝛽)!(𝑢−𝑚− 𝛽)!

−
𝑤∑︁

𝛽=0

(−1)𝛽 · (𝑢− 𝛽)!𝛽
𝛽!(𝑤 − 𝛽)!(𝑢−𝑚− 𝛽)!

= −
𝑤∑︁

𝛽=0

(−1)𝛽 · (𝑢− 𝛽)!𝛽
𝛽!(𝑤 − 𝛽)!(𝑢−𝑚− 𝛽)!

, [by induction hypothesis, 𝑝 = 𝑚]

= −
𝑤∑︁

𝛽=1

(−1)𝛽 · (𝑢− 𝛽)!𝛽
𝛽!(𝑤 − 𝛽)!(𝑢−𝑚− 𝛽)!

= −
𝑤∑︁

𝛽=1

(−1)𝛽 · (𝑢− 𝛽)!
(𝛽 − 1)!(𝑤 − 𝛽)!(𝑢−𝑚− 𝛽)!

=
𝑤−1∑︁
𝛽=0

(−1)𝛽 · (𝑢− 1− 𝛽)!
𝛽!(𝑤 − 1− 𝛽)!(𝑢−𝑚− 1− 𝛽)!

=

(𝑤−1)∑︁
𝛽=0

(−1)𝛽 · ((𝑢− 1)− 𝛽)!
𝛽!((𝑤 − 1)− 𝛽)!((𝑢− 1)−𝑚− 𝛽)!

= 0, [by induction hypothesis, 𝑝 = 𝑚].
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Condition 2: 𝑢− 𝑝 ≤ 𝑤. Then min(𝑢− 𝑝, 𝑤) = 𝑢− 𝑝 and min(𝑢− 𝑝− 1, 𝑤) = 𝑢− 𝑝− 1. We

have that

−
𝑢−𝑝−1∑︁
𝛽=0

𝒞𝑤𝛽 ·
[︂ 𝑢−𝛽∑︁

𝛼=𝑢−𝑝−𝛽

(−1)𝛼𝒞𝑢−𝛽
𝛼

]︂
= −

𝑢−𝑝∑︁
𝛽=0

𝒞𝑤𝛽 ·
[︂ 𝑢−𝛽∑︁

𝛼=𝑢−𝑝−𝛽

(−1)𝛼𝒞𝑢−𝛽
𝛼

]︂
+

𝑝∑︁
𝛼=0

(−1)𝛼𝒞𝑝𝛼

= −
𝑢−𝑝∑︁
𝛽=0

𝒞𝑤𝛽 ·
[︂ 𝑢−𝛽∑︁

𝛼=𝑢−𝑝−𝛽

(−1)𝛼𝒞𝑢−𝛽
𝛼

]︂

= −
𝑢−𝑝∑︁
𝛽=0

𝒞𝑤𝛽 ·
[︂ 𝑢−𝛽∑︁

𝛼=𝑢−𝑝+1−𝛽

(−1)𝛼𝒞𝑢−𝛽
𝛼

]︂
−

𝑢−𝑝∑︁
𝛽=0

𝒞𝑤𝛽 · (−1)𝑢−𝑝−𝛽 · 𝒞𝑢−𝛽
𝑢−𝛽−𝑝

= −
𝑢−𝑝∑︁
𝛽=0

𝒞𝑤𝛽 · (−1)𝑢−𝑝−𝛽 · 𝒞𝑢−𝛽
𝑢−𝛽−𝑝, [by induction hypothesis, 𝑟 = 𝑢− 𝑝]

= (−1)𝑢−𝑝+1 ·
𝑢−𝑝∑︁
𝛽=0

(−1)𝛽 · 𝒞𝑤𝛽 · 𝒞
𝑢−𝛽
𝑢−𝛽−𝑝 = (−1)1+𝑢−𝑝 · 𝑤!

𝑝!
·
𝑢−𝑝∑︁
𝛽=0

(−1)𝛽 · (𝑢− 𝛽)!
𝛽!(𝑤 − 𝛽)!(𝑢− 𝑝− 𝛽)!

.

Now it is sufficient to prove that
∑︀𝑢−𝑝

𝛽=0(−1)𝛽 ·
(𝑢−𝛽)!

𝛽!(𝑤−𝛽)!(𝑢−𝑝−𝛽)!
= 0. We prove it by induction on

𝑢 − 𝑤. For 𝑢 − 𝑤 = 0, it follows that
∑︀𝑢−𝑝

𝛽=0(−1)𝛽 ·
(𝑢−𝛽)!

𝛽!(𝑤−𝛽)!(𝑢−𝑝−𝛽)!
=
∑︀𝑢−𝑝

𝛽=0(−1)𝛽 ·
1

𝛽!(𝑢−𝑝−𝛽)!
=

1
(𝑢−𝑝)!

∑︀𝑢−𝑝
𝛽=0(−1)𝛽 · 𝒞

𝑢−𝑝
𝛽 = 0. Assuming that the result holds for 𝑢 − 𝑤 = 𝑚, we prove it for
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𝑢− 𝑤 = 𝑚+ 1:

𝑢−𝑝∑︁
𝛽=0

(−1)𝛽 · (𝑢− 𝛽)!
𝛽!(𝑢−𝑚− 1− 𝛽)!(𝑢− 𝑝− 𝛽)!

=

𝑢−𝑝∑︁
𝛽=0

(−1)𝛽 · (𝑢− 𝛽)!(𝑢−𝑚− 𝛽)
𝛽!(𝑢−𝑚− 𝛽)!(𝑢− 𝑝− 𝛽)!

= (𝑢−𝑚) ·
𝑢−𝑝∑︁
𝛽=0

(−1)𝛽 · (𝑢− 𝛽)!
𝛽!(𝑢−𝑚− 𝛽)!(𝑢− 𝑝− 𝛽)!

−
𝑢−𝑝∑︁
𝛽=0

(−1)𝛽 · (𝑢− 𝛽)!𝛽
𝛽!(𝑢−𝑚− 𝛽)!(𝑢− 𝑝− 𝛽)!

= −
𝑢−𝑝∑︁
𝛽=0

(−1)𝛽 · (𝑢− 𝛽)!𝛽
𝛽!(𝑢−𝑚− 𝛽)!(𝑢− 𝑝− 𝛽)!

, [by induction hypothesis, 𝑤 = 𝑢−𝑚]

= −
𝑢−𝑝∑︁
𝛽=1

(−1)𝛽 · (𝑢− 𝛽)!𝛽
𝛽!(𝑢−𝑚− 𝛽)!(𝑢− 𝑝− 𝛽)!

= −
𝑢−𝑝∑︁
𝛽=1

(−1)𝛽 · (𝑢− 𝛽)!
(𝛽 − 1)!(𝑢−𝑚− 𝛽)!(𝑢− 𝑝− 𝛽)!

=

𝑢−𝑝−1∑︁
𝛽=0

(−1)𝛽 · (𝑢− 1− 𝛽)!
𝛽!(𝑢−𝑚− 1− 𝛽)!(𝑢− 𝑝− 1− 𝛽)!

=

(𝑢−1)−𝑝∑︁
𝛽=0

(−1)𝛽 · ((𝑢− 1)− 𝛽)!
𝛽!((𝑢− 1)−𝑚− 𝛽)!((𝑢− 1)− 𝑝− 𝛽)!

= 0, [by induction hypothesis].

Proof. of Proposition 2.2.2: For every 𝐶 ⊆ 𝑁 we define boolean functions 𝜒𝐶 : 2𝑁 → R and

𝜓𝐶 : 2𝑁 → R by

𝜒𝐶(𝑋) = (−1)|𝐶| · I[𝐶 ⊆ 𝑋],

𝜓𝐶(𝑋) = (−1)|𝑋|I[𝑋 ⊆ 𝐶],

where I[𝐴] is an indicator function which is equal to 1, it condition 𝐴 is satisfied, and 0 otherwise.

Then for all 𝐶1, 𝐶2 ⊆ 𝑁 we claim that

∑︁
𝑋⊆𝑁

𝜒𝐶1(𝑋) · 𝜓𝐶2(𝑋) =

⎧⎪⎨⎪⎩1, if 𝐶1 = 𝐶2,

0, otherwise,

(5.3)
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First, we show that
∑︀

𝑋⊆𝑁 𝜒𝐶(𝑋) · 𝜓𝐶(𝑋) = 1 for every 𝐶 ⊆ 𝑁 :

∑︁
𝑋⊆𝑁

𝜒𝐶(𝑋) · 𝜓𝐶(𝑋) =
∑︁
𝑋⊆𝑁

I[𝐶 ⊆ 𝑋] · (−1)|𝐶|+|𝑋|I[𝑋 ⊆ 𝐶] = (−1)|𝐶|+|𝐶| = 1

Then we show that
∑︀

𝑋⊆𝑁 𝜒𝐶1(𝑋) · 𝜓𝐶2(𝑋) = 1 for all 𝐶1, 𝐶2 ⊆ 𝑁 s.t. 𝐶1 ̸= 𝐶2:

∑︁
𝑋⊆𝑁

𝜒𝐶1(𝑋) · 𝜓𝐶2(𝑋) =
∑︁
𝑋⊆𝑁

I[𝐶1 ⊆ 𝑋] · (−1)|𝐶1|+|𝑋|I[𝑋 ⊆ 𝐶2]

= (−1)|𝐶1| ·
∑︁
𝑋⊆𝑁

(−1)|𝑋|I[𝐶1 ⊆ 𝑋 ⊆ 𝐶2]

= (−1)|𝐶1| · (−1)|𝐶1| ·
|𝐶2|−|𝐶1|∑︁

𝑘=0

(−1)𝑘𝒞|𝐶2|−|𝐶1|
𝑘 , where 𝒞𝑛𝑘 =

𝑛!

𝑘!(𝑛− 𝑘)![︁
since the expression depends only on the cardinality of sets, the summation over the sets

is reduced to the summation over the cardinality of sets
]︁

= (−1)2|𝐶1| · (1− 1)|𝐶2|−|𝐶1| = 0.

Consequently, the probability to choose the “no-purchase” option 𝑎0 from the offer set {𝑁 ∖𝑋}+

is given by

P0(𝑁 ∖𝑋) =
∑︁
𝐶⊆𝑋

𝜆(𝐶) =
∑︁
𝐶⊆𝑁

𝜆(𝐶) · (−1)2|𝐶| · I[𝐶 ⊆ 𝑋] (5.4)

=
∑︁
𝐶⊆𝑁

𝜆(𝐶) · (−1)|𝐶| · 𝜒𝐶(𝑋).
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Then it follows that

∑︁
𝑋⊆𝐶

(−1)|𝐶|−|𝑋| · P0(𝑁 ∖𝑋) =
∑︁
𝑋⊆𝑁

P0(𝑁 ∖𝑋) · (−1)|𝐶|+|𝑋|I[𝑋 ⊆ 𝐶] (5.5)

= (−1)|𝐶| ·
∑︁
𝑋⊆𝑁

P0(𝑁 ∖𝑋) · 𝜓𝐶(𝑋)

= (−1)|𝐶| ·
∑︁
𝑋⊆𝑁

∑︁
𝐶1⊆𝑁

𝜆(𝐶1) · (−1)|𝐶1| · 𝜒𝐶1(𝑋) · 𝜓𝐶(𝑋)[︂
by Equation (5.4)

]︂
= (−1)|𝐶| ·

∑︁
𝐶1⊆𝑁

𝜆(𝐶1) · (−1)|𝐶1| ·
∑︁
𝑋⊆𝑁

𝜒𝐶1(𝑋) · 𝜓𝐶(𝑋)

= (−1)|𝐶| · 𝜆(𝐶) · (−1)|𝐶|,

[︂
by Equation (5.3)

]︂
= 𝜆(𝐶).

Now it remains to prove the uniqueness of probability distribution function 𝜆 obtained from pur-

chasing transactions data under GCC choice model. Note that Equation (5.4) relates probability

distribution 𝜆 over consideration sets to the choice frequencies P0(𝑁 ∖𝑋) through the system of

linear equations:

P0(𝑁 ∖𝑋) =
∑︁
𝐶⊆𝑁

𝜆(𝐶) · (−1)|𝐶| · 𝜒𝐶(𝑋), ∀ 𝑋 ⊆ 𝑁 ⇐⇒ 𝑦 = 𝐴 · 𝜆, (5.6)

where 𝑦 = (𝑦𝑋)𝑋⊆𝑁 denotes the
⃒⃒
2𝑁
⃒⃒
×1 vector of choice fractions and 𝜆 = (𝜆𝐶)𝐶⊆𝑁 denotes the⃒⃒

2𝑁
⃒⃒
× 1 vector that represents the probability distribution function over consideration sets. 𝐴

is the
⃒⃒
2𝑁
⃒⃒
×
⃒⃒
2𝑁
⃒⃒
matrix such that 𝐴’s entry corresponding to the row 𝑋 and column 𝐶 is equal

to (−1)|𝐶| · 𝜒𝐶(𝑋). Therefore, the relation between the choice frequencies and the underlying

model can be represented in a compact form as 𝑦 = 𝐴 · 𝜆. Then the proof of uniqueness of 𝜆

reduces to showing that det(𝐴) ̸= 0. From Equation (5.5) we have

𝜆(𝐶) = (−1)|𝐶| ·
∑︁
𝑋⊆𝑁

Pr0(𝑁 ∖𝑋) · 𝜓𝐶(𝑋), ∀𝐶 ⊆ 𝑁 ⇐⇒ 𝜆 = 𝐵 · 𝑦,

which establishes alternative linear relationship between choice frequencies Pr0(𝑁 ∖𝑋) and the
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model parameters 𝜆 in a compact form as 𝜆 = 𝐵 · 𝑦, where 𝐵 is the
⃒⃒
2𝑁
⃒⃒
×
⃒⃒
2𝑁
⃒⃒
matrix such

that 𝐵’s entry corresponding to the row 𝐶 and column 𝑋 is equal to (−1)|𝐶| ·𝜓𝐶(𝑋). Therefore,

we get

𝜆 = 𝐵 · 𝑦 = 𝐵 · 𝐴 · 𝜆,
[︂
by Equation (5.6)

]︂
=⇒ 𝐼 = 𝐵 · 𝐴 =⇒ det(𝐼) = det(𝐵) · det(𝐴)

=⇒ 1 = det(𝐵) · det(𝐴) =⇒ det(𝐴) ̸= 0.

Proof. of Proposition 2.2.3: Assume by contradiction that 𝜎(𝑎𝑗) > 𝜎(𝑎𝑖) if P𝑖({𝑎𝑖}) > P𝑗({𝑎𝑖, 𝑎𝑗}).

Then it follows from GCC model definition that P𝑖({𝑎𝑖}) = P𝑖({𝑎𝑖, 𝑎𝑗}), which leads to contra-

diction.

Proof. of Proposition 2.2.4: It follows from the proposition that

𝜆(𝐶) =
∑︁
𝑋⊆𝑁

∑︁
𝑌⊇𝑋∪𝐶

(−1)1+|𝑌 |−|𝑋Δ𝐶| · P0(𝑋) · I[|𝑋 ∪ 𝐶| ≤ 𝑘 < |𝑌 |]

=
∑︁
𝑋⊆𝑁

∑︁
𝑌⊇𝑋∪𝐶

P0(𝑋) · (−1)1+|𝑋∩𝐶| · (−1)|𝑌 |−|𝑋∪𝐶| · I[|𝑋 ∪ 𝐶| ≤ 𝑘 < |𝑌 |]

=
∑︁
𝑋⊆𝑁

P0(𝑋) · (−1)1+|𝑋∩𝐶| · I[|𝑋 ∪ 𝐶| ≤ 𝑘] ·
∑︁

𝑌⊇𝑋∪𝐶

(−1)|𝑌 |−|𝑋∪𝐶| · I[|𝑌 | > 𝑘]

[︁
since the expression depends only on the cardinality of sets 𝑌 , the summation over 𝑌

is reduced to the summation over the cardinality of sets 𝑌
]︁

=
∑︁
𝑋⊆𝑁

P0(𝑋) · (−1)1+|𝑋∩𝐶| · I[|𝑋 ∪ 𝐶| ≤ 𝑘] ·
𝑛−|𝑋∪𝐶|∑︁

𝛼=𝑘+1−|𝑋∪𝐶|

(−1)𝛼𝒞𝑛−|𝑋∪𝐶|
𝛼 ,[︂

where 𝒞𝑛𝑘 =
𝑛!

𝑘!(𝑛− 𝑘)!
.

]︂

202



www.manaraa.com

For every 𝐶 ⊆ 𝑁 we define boolean functions 𝜒𝐶 : 2𝑁 → R and 𝜓𝐶 : 2𝑁 → R by

𝜒𝐶(𝑋) = I[𝐶 ⊆ 𝑋̄, |𝐶| ≤ 𝑘],

𝜓𝐶(𝑋) = (−1)1+|𝑋∩𝐶| · I[|𝑋 ∪ 𝐶| ≤ 𝑘] ·
𝑛−|𝑋∪𝐶|∑︁

𝛼=𝑘+1−|𝑋∪𝐶|

(−1)𝛼𝒞𝑛−|𝑋∪𝐶|
𝛼 .

Restricting consideration sets and offer sets by the size of up to 𝑘 (by assumption of proposition),

we represent the probability to choose the “no-purchase” option 𝑎0 from the offer set 𝑋+ through

linear combination of boolean functions 𝜒𝐶(𝑋) as follows:

P0(𝑋) =
∑︁
𝐶⊆𝑁

𝜆(𝐶) · I[𝐶 ⊆ 𝑋̄, |𝐶| ≤ 𝑘] =
∑︁
𝐶⊆𝑁

𝜆(𝐶) · 𝜒𝐶(𝑋). (5.7)

Then for all 𝐶1, 𝐶2 ⊆ 𝑁 such that |𝐶1|, |𝐶2| ≤ 𝑘 < 𝑛 we claim that

∑︁
𝑋⊆𝑁

𝜒𝐶1(𝑋) · 𝜓𝐶2(𝑋) =

⎧⎪⎨⎪⎩1, if 𝐶1 = 𝐶2,

0, otherwise.

(5.8)

Consequently, it follows from the claim that

∑︁
𝑋⊆𝑁

P0(𝑋) · (−1)1+|𝑋∩𝐶| · I[|𝑋 ∪ 𝐶| ≤ 𝑘] ·
𝑛−|𝑋∪𝐶|∑︁

𝛼=𝑘+1−|𝑋∪𝐶|

(−1)𝛼𝒞𝑛−|𝑋∪𝐶|
𝛼 (5.9)

=
∑︁
𝑋⊆𝑁

P0(𝑋) · 𝜓𝐶(𝑋) =
∑︁
𝑋⊆𝑁

∑︁
𝐶1⊆𝑁

𝜆(𝐶1) · 𝜒𝐶1(𝑋) · 𝜓𝐶(𝑋)

=
∑︁
𝐶1⊆𝑁

𝜆(𝐶1) ·
∑︁
𝑋⊆𝑁

𝜒𝐶1(𝑋) · 𝜓𝐶(𝑋) = 𝜆(𝐶),

[︂
by Equation (5.8)

]︂
.

Now to complete the proof of the proposition, it is sufficient to prove the claim and show the

uniqueness of the solution. We prove the claim by considering two different cases.
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Figure 5-1: The case when 𝐶1 ̸⊂ 𝐶2 and 𝑛− |𝐶1| − |𝐶5| > 0.

Case 1: 𝐶2 ⊆ 𝐶1.

∑︁
𝑋⊆𝑁

𝜒𝐶1(𝑋) · 𝜓𝐶2(𝑋) =
∑︁
𝑋⊆𝑁

(−1)1 · I[|𝐶1| ≤ 𝑘] · I[𝑋 ∩ 𝐶1 = ∅] · I[|𝑋| ≤ 𝑘 − |𝐶2|]

×
𝑛−|𝑋|−|𝐶2|∑︁

𝛼=𝑘+1−|𝑋|−|𝐶2|

(−1)𝛼𝒞𝑛−|𝑋|−|𝐶2|
𝛼[︁

in this case, 𝑋 ∩ 𝐶1 = ∅, |𝑋 ∩ 𝐶1| = 0, |𝑋 ∩ 𝐶2| = 0, and |𝑋 ∪ 𝐶2| = |𝑋|+ |𝐶2|
]︁

= −
∑︁
𝑋⊆𝑁

I[|𝐶1| ≤ 𝑘] · I[𝑋 ∩ 𝐶1 = ∅] · I[|𝑋| ≤ 𝑘 − |𝐶2|] ·
𝑛−|𝐶2|−|𝑋|∑︁

𝛼=𝑘−|𝐶2|+1−|𝑋|

(−1)𝛼𝒞𝑛−|𝐶2|−|𝑋|
𝛼 ,

[︁
since the expression depends only on the cardinality of sets, the summation over the sets

is reduced to the summation over the cardinality of sets
]︁

= −
min(𝑘−|𝐶2|,𝑛−|𝐶1|)∑︁

𝛽=0

𝒞𝑛−|𝐶1|
𝛽 ·

[︂ 𝑛−|𝐶2|−𝛽∑︁
𝛼=𝑘−|𝐶2|+1−𝛽

(−1)𝛼𝒞𝑛−|𝐶2|−𝛽
𝛼

]︂
,
[︁
where 𝛽 - cardinality of set 𝑋

]︁

=

⎧⎪⎨⎪⎩1, if 𝐶1 = 𝐶2,

0, if 𝐶1 ⊂ 𝐶2,

where the last equality follows by invoking Lemma 5.2.2, where 𝑤 = 𝑛− |𝐶1|, 𝑟 = 𝑘 − |𝐶2|, and

𝑢 = 𝑛− |𝐶2|.

Case 2: 𝐶2 ̸⊆ 𝐶1.
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∑︁
𝑋⊆𝑁

𝜒𝐶1(𝑋) · 𝜓𝐶2(𝑋) =
∑︁
𝑋⊆𝑁

(−1)1+|𝑋∩𝐶2| · I
[︂
𝑋 ∩ 𝐶1 = ∅, |𝐶1| ≤ 𝑘

]︂
· I
[︂
|𝑋 ∪ 𝐶2| ≤ 𝑘

]︂

×
𝑛−|𝑋∪𝐶2|∑︁

𝛼=𝑘+1−|𝑋∪𝐶2|

(−1)𝛼𝒞𝑛−|𝑋∪𝐶2|
𝛼[︁

since the expression depends only on the cardinality of sets, the summation over the sets

is reduced to the summation over the cardinality of sets
]︁

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︀|𝐶5|
𝛾=0(−1)1+𝛾 · 𝒞|𝐶5|

𝛾 ·

[︃∑︀min(𝑘−|𝐶2|,𝑛−|𝐶1|−|𝐶5|)
𝛽=0 𝒞𝑛−|𝐶1|−|𝐶5|

𝛽 ·
[︂∑︀𝑛−𝛽−|𝐶2|

𝛼=𝑘+1−𝛽−|𝐶2|(−1)
𝛼𝒞𝑛−𝛽−|𝐶2|

𝛼

]︂]︃
,

if 𝐶1 ̸⊂ 𝐶2 and 𝑛− |𝐶1| − |𝐶5| > 0, see Figure 5-1∑︀|𝐶5|
𝛾=0(−1)1+𝛾 · 𝒞|𝐶5|

𝛾 ·

[︃∑︀min(𝑘−|𝐶2|,𝑛−|𝐶2|)
𝛽=0 𝒞𝑛−|𝐶2|

𝛽 ·
[︂∑︀𝑛−𝛽−|𝐶2|

𝛼=𝑘+1−𝛽−|𝐶2|(−1)
𝛼𝒞𝑛−𝛽−|𝐶2|

𝛼

]︂]︃
if 𝐶1 ⊂ 𝐶2, see Figure 5-2∑︀|𝐶5|

𝛾=0(−1)1+𝛾 · 𝒞|𝐶5|
𝛾 ·

[︂∑︀𝑛−|𝐶2|
𝛼=𝑘+1−|𝐶2|(−1)

𝛼𝒞𝑛−|𝐶2|
𝛼

]︂
,

if 𝐶1 ̸⊂ 𝐶2 and 𝑛− |𝐶1| − |𝐶5| = 0, see Figure 5-3[︂
where 𝐶5 = 𝐶2 ∖ {𝐶1 ∩ 𝐶2}

]︂

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[︂
−
∑︀|𝐶5|

𝛾=0(−1)𝛾 · 𝒞
|𝐶5|
𝛾

]︂
·

[︃∑︀min(𝑘−|𝐶2|,𝑛−|𝐶1|−|𝐶5|)
𝛽=0 𝒞𝑛−|𝐶1|−|𝐶5|

𝛽 ·
[︂∑︀𝑛−𝛽−|𝐶2|

𝛼=𝑘+1−𝛽−|𝐶2|(−1)
𝛼𝒞𝑛−𝛽−|𝐶2|

𝛼

]︂]︃
,

if 𝐶1 ̸⊂ 𝐶2 and 𝑛− |𝐶1| − |𝐶5| > 0,[︂
−
∑︀|𝐶5|

𝛾=0(−1)𝛾 · 𝒞
|𝐶5|
𝛾

]︂
·

[︃∑︀min(𝑘−|𝐶2|,𝑛−|𝐶2|)
𝛽=0 𝒞𝑛−|𝐶2|

𝛽 ·
[︂∑︀𝑛−𝛽−|𝐶2|

𝛼=𝑘+1−𝛽−|𝐶2|(−1)
𝛼𝒞𝑛−𝛽−|𝐶2|

𝛼

]︂]︃
if 𝐶1 ⊂ 𝐶2,[︂

−
∑︀|𝐶5|

𝛾=0(−1)𝛾 · 𝒞
|𝐶5|
𝛾

]︂
·
[︂∑︀𝑛−|𝐶2|

𝛼=𝑘+1−|𝐶2|(−1)
𝛼𝒞𝑛−|𝐶2|

𝛼

]︂
, if 𝐶1 ̸⊂ 𝐶2 and 𝑛− |𝐶1| − |𝐶5| = 0,

= 0,

where the last equality follows since |𝐶5| > 0, and
∑︀|𝐶5|

𝛾=0(−1)𝛾 · 𝒞
|𝐶5|
𝛾 = 0.

In order to complete the proof, we show the uniqueness of probability distribution function 𝜆

in our setting. First, note that Equation (5.7) relates probability distribution 𝜆 over consideration
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Figure 5-2: The case when 𝐶1 ⊂ 𝐶2.

Figure 5-3: The case when 𝐶1 ̸⊂ 𝐶2 and 𝑛− |𝐶1| − |𝐶5| = 0.

sets to the choice frequencies Pr
(︀
𝑎0
⃒⃒
𝑋
)︀
through the system of linear equations:

P0(𝑋) =
∑︁
𝐶⊆𝑁

𝜆(𝐶) · 𝜒𝐶(𝑋), ∀ 𝑋 ⊆ 𝑁 ⇐⇒ 𝑦 = 𝐴 · 𝜆, (5.10)

where 𝑦 = (𝑦𝑋)𝑋⊆𝑁 denotes the
⃒⃒
2𝑁
⃒⃒
×1 vector of choice fractions and 𝜆 = (𝜆𝐶)𝐶⊆𝑁 denotes the⃒⃒

2𝑁
⃒⃒
× 1 vector that represents the probability distribution function over consideration sets. 𝐴

is the
⃒⃒
2𝑁
⃒⃒
×
⃒⃒
2𝑁
⃒⃒
matrix such that 𝐴’s entry corresponding to the row 𝑋 and column 𝐶 is equal

to 𝜒𝐶(𝑋). As a result, the relation between the choice frequencies and the underlying model can

be represented in a compact form as 𝑦 = 𝐴 · 𝜆. Then the proof of uniqueness of 𝜆 reduces to

showing that det(𝐴) ̸= 0. It follows from Equation (5.9) that

𝜆(𝐶) =
∑︁
𝑋⊆𝑁

P0(𝑋) · 𝜓𝐶(𝑋), ∀𝐶 ⊆ 𝑁 ⇐⇒ 𝜆 = 𝐵 · 𝑦,

which provides another relationship between choice frequencies P0(𝑋) and the model parameters

𝜆 in a linear form as 𝜆 = 𝐵·𝑦, where 𝐵 is the
⃒⃒
2𝑁
⃒⃒
×
⃒⃒
2𝑁
⃒⃒
matrix such that 𝐵’s entry corresponding
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to the row 𝐶 and column 𝑋 is equal to 𝜓𝐶(𝑋). Therefore, we get

𝜆 = 𝐵 · 𝑦 = 𝐵 · 𝐴 · 𝜆,
[︂
by Equation (5.10)

]︂
=⇒ 𝐼 = 𝐵 · 𝐴 =⇒ det(𝐼) = det(𝐵) · det(𝐴)

=⇒ 1 = det(𝐵) · det(𝐴) =⇒ det(𝐴) ̸= 0.

Lemma 5.2.3. Assume that for all consideration sets 𝐶 ⊆ 𝑁 we have that

∑︁
𝑋⊆𝐶

(−1)|𝐶|−|𝑋|P0(𝑁 ∖𝑋) ≥ 0,

with strict inequality for consideration sets of the size up to three, i.e., if |𝐶| ≤ 3, then for all

consideration sets 𝐶 ⊆ 𝑆 s.t. 𝑆 ⊆ 𝑁 it follows that

∑︁
𝑋⊆𝐶

(−1)|𝐶|−|𝑋|P0(𝑆 ∖𝑋) ≥ 0,

with strict inequality for consideration sets of the size up to three, i.e., if |𝐶| ≤ 3.

Proof. Proof: Suppose that 𝐶 ⊆ 𝑆 and 𝑆 ⊆ 𝑁 . Let 𝑆 denote 𝑁 ∖ 𝑆. We can now establish the
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following chain of equalities:

∑︁
𝐵⊆𝐶

(−1)|𝐶|−|𝐵|P0(𝑆 ∖𝐵) =
∑︁
𝐵⊆𝐶

(−1)|𝐶|−|𝐵| · P0({𝑁 ∖ 𝑆} ∖𝐵)

=
∑︁
𝐵⊆𝐶

(−1)|𝐶|−|𝐵| · P0({𝑁 ∖𝐵} ∖ 𝑆)

=
∑︁
𝐵⊆𝐶

∑︁
𝐴⊆𝑆

∑︁
𝐷⊆𝐴

(−1)|𝐴|−|𝐷| · (−1)|𝐶|−|𝐵| · P0({𝑁 ∖𝐵} ∖𝐷)[︂
by invoking Lemma 5.2.1 for every 𝐵 ⊆ 𝐶, where 𝑍 = 𝑁 ∖𝐵, 𝑌 = 𝑆,

𝑃 = 𝐴, and 𝑓(𝑍 ∖ 𝑌 ) = (−1)|𝐶|−|𝐵| · P0({𝑁 ∖𝐵} ∖ 𝑆)
]︂

=
∑︁
𝐴⊆𝑆

∑︁
𝐷⊆𝐴

∑︁
𝐵⊆𝐶

(−1)|𝐶|+|𝐴|−|𝐷|−|𝐵| · P0({𝑁 ∖𝐵} ∖𝐷)

=
∑︁
𝐴⊆𝑆

∑︁
𝑋∈
⟨︀
𝐴∪𝐶
⟩︀(−1)|𝐶|+|𝐴|−|𝑋| · P0(𝑁 ∖𝑋)

[︂
where 𝑋 = 𝐷 ∪𝐵, since 𝐴 ∩ 𝐶 = ∅

]︂
=
∑︁
𝐴⊆𝑆

∑︁
𝑋∈
⟨︀
𝐴∪𝐶
⟩︀(−1)|𝐶∪𝐴|−|𝑋| · P0(𝑁 ∖𝑋)

[︂
since 𝐴 ∩ 𝐶 = ∅

]︂

=
∑︁
𝐴⊆𝑆

∑︁
𝑋⊆𝐶′

(−1)|𝐶′|−|𝑋| · P0(𝑁 ∖𝑋)

[︂
where 𝐶 ′ = 𝐴 ∪ 𝐶

]︂

≥ 0, with strict inequality when |𝐶| ≤ 3,

[︂
by assumptions of the Lemma,

since
∑︁
𝑋⊆𝐶′

(−1)|𝐶′|−|𝑋| · P0(𝑁 ∖𝑋) ≥ 0 with strict inequality when |𝐶 ′| ≤ 3

]︂
.

Lemma 5.2.4. If a sample of sales transaction data satisfies Conditions 1, 2, and 3, then for

all 𝑎𝑖 ∈ 𝑆1 ∩ 𝑆2 where 𝑆1, 𝑆2 ⊆ 𝑁 and 𝑆1 ⊆ 𝑆2 we have that P𝑖(𝑆1) ≥ P𝑖(𝑆2). .

Proof. Proof: Prove the result by induction on the n=|𝑆2| − |𝑆1|. We consider 𝑎1 ∈ 𝑆1 ∩ 𝑆2 and

𝑆1 ⊆ 𝑆2. For the base case 𝑛 = 0 we have that 𝑆1 = 𝑆2 and P1(𝑆1) = P1(𝑆2). Assume that

the result holds for 𝑛 = 𝑘, i.e., 𝑆2 = 𝑆 and |𝑆| − |𝑆1| = 𝑘. Then we prove it for 𝑛 = 𝑘 + 1.

Let us suppose w.l.o.g. that 𝑆2 = 𝑆 ∪ {𝑎2} and 𝑎2 ̸∈ 𝑆. Next, assume, by contradiction, that
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P1(𝑆2 ∖ {𝑎2}) < P1(𝑆2). Consequently, by Condition 2 it follows that P1({𝑎1}) < P1({𝑎1, 𝑎2}).

Then by Condition 1 we have that

P2({𝑎2}) = P2({𝑎1, 𝑎2}). (5.11)

It now follows that

P1({𝑎1})− P1({𝑎1, 𝑎2})

=

(︂
1− P0({𝑎1})

)︂
−
(︂
1− P0({𝑎1, 𝑎2})− P2({𝑎1, 𝑎2})

)︂
, [by standard probability property]

=

(︂
1− P0({𝑎1})

)︂
−
(︂
1− P0({𝑎1, 𝑎2})− P2({𝑎2})

)︂
,

[︂
by Equation (5.11)

]︂
=

(︂
1− P0({𝑎1})

)︂
−
(︂
P0({𝑎2})− P0({𝑎1, 𝑎2})

)︂
, [by standard probability property]

= 1− P0({𝑎1})− P0({𝑎2}) + P0({𝑎1, 𝑎2}) > 0,[︂
by Condition 3 and Lemma 5.2.3, when 𝐶 = 𝑆 = {𝑎1, 𝑎2}

]︂
,

which contradicts to P1({𝑎1}) < P1({𝑎1, 𝑎2}). Then we have

P1(𝑆2) ≤ P1(𝑆2 ∖ {𝑎2}) = P1(𝑆), [note that |𝑆| − |𝑆1| = 𝑘]

≤ P1(𝑆1), [by induction hypothesis].

Therefore, the result now follows by induction.

Lemma 5.2.5. Consider 𝑎1, 𝑎2 ∈ 𝑆, 𝑆 ⊆ 𝑁, 𝑎1 ̸= 𝑎2. Then GCC choice model, with strict

preference list 𝜎 and distribution over consideration sets 𝜆 where 𝜆(𝐶) > 0 if |𝐶| ≤ 3, implies

the following list of implications:

𝑎) P1(𝑆 ∖{𝑎2}) > P1(𝑆) =⇒ 𝑎2 ≻ 𝑎1, and ∀𝑆 ′ ⊆ 𝑁 𝑠.𝑡. 𝑎1, 𝑎2 ∈ 𝑆 ′ : P1(𝑆
′ ∖{𝑎2}) > P1(𝑆

′),

𝑏) P1(𝑆 ∖ {𝑎2}) = P1(𝑆) =⇒ 𝑎1 ≻ 𝑎2, and ∀𝑆 ′ ⊆ 𝑁 𝑠.𝑡. 𝑎1, 𝑎2 ∈ 𝑆 ′ : P1(𝑆
′ ∖ {𝑎2}) = P1(𝑆

′),

𝑐) P1(𝑆 ∖ {𝑎2}) ̸= P1(𝑆) =⇒ P2(𝑆 ∖ {𝑎1}) = P2(𝑆).

Proof. Proof: a) Suppose that P1(𝑆 ∖ {𝑎2}) > P1(𝑆). Assume, by contradiction, that 𝑎1 ≻ 𝑎2.

Then it can be inferred from purchase probability definition under GCC, see Equation (2.1),
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that P1(𝑆 ∖ {𝑎2}) = P1(𝑆), which leads to contradiction. As a result, we have that 𝑎2 ≻ 𝑎1 since

preferences are strict and asymmetric. Then ∀𝑆 ′ ⊆ 𝑁 𝑠.𝑡. 𝑎1, 𝑎2 ∈ 𝑆 ′ we establish that

P1(𝑆
′ ∖ {𝑎2})− P1(𝑆

′) ≥ 𝜆({𝑎1, 𝑎2}),
[︂
by Equation (2.1)

]︂
> 0,

[︂
by Assumption that 𝜆(𝐶) > 0 if |𝐶| ≤ 3

]︂
.

b) Suppose that P1(𝑆 ∖ {𝑎2}) = P1(𝑆). Assume, by contradiction, that 𝑎2 ≻ 𝑎1. Then it

follows that

P1(𝑆 ∖ {𝑎2})− P1(𝑆) ≥ 𝜆({𝑎1, 𝑎2}),
[︂
by Equation (2.1)

]︂
> 0,

[︂
by Assumption that 𝜆(𝐶) > 0 if |𝐶| ≤ 3

]︂
.

which contradicts to the assumption above. As a result, we have that 𝑎1 ≻ 𝑎2, since preferences

are strict and asymmetric. Then by Equation (2.1) we have that ∀𝑆 ′ ⊆ 𝑁 𝑠.𝑡. 𝑎1, 𝑎2 ∈ 𝑆 ′:

P1(𝑆
′ ∖ {𝑎2}) = P1(𝑆

′).

c) Suppose that P1(𝑆 ∖ {𝑎2}) ̸= P1(𝑆). Then it is straightforward to verify that P1(𝑆 ∖

{𝑎2}) > P1(𝑆), since the following inequality holds from the Lemma 5.2.4: P1(𝑆 ∖{𝑎2}) ≥ P1(𝑆).

Consequently, invoking the implication from part 𝑎), we have 𝑎2 ≻ 𝑎1, and by Equation (2.1) we

obtain that P2(𝑆 ∖ {𝑎1}) = P2(𝑆).

Proof. of Proposition 2.2.5: Necessity: if purchasing transactions data is consistent with GCC

choice model with strict preference list 𝜎 and distribution over consideration sets 𝜆 where 𝜆(𝐶) >

0 if |𝐶| ≤ 3, then we claim that three axioms Condition 1, Condition 2, and Condition 3 are

satisfied. First, it follows from Proposition 2.2.2 that Condition 3 is satisfied. Then Condition 1

and Condition 2 are satisfied by Lemma 5.2.5.

Sufficiency: we claim that the choice rule that satisfies Condition 1, Condition 2, and Con-

dition 3 is a GCC choice model with the strict preference list 𝜎 where no-purchase option is the

least preferred item, and probability distribution function 𝜆 over consideration sets such that

𝜆(𝐶) > 0 if |𝐶| ≤ 3.

Define a binary relation 𝛿𝑖𝑗 between products 𝑎𝑖, 𝑎𝑗 ⊆ 𝑁, 𝑎𝑖 ̸= 𝑎𝑗, where 𝛿𝑖𝑗 = 1 if P𝑗(𝑆 ∖
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{𝑎𝑖}) > P𝑗(𝑆) for some 𝑆 ⊆ 𝑁 s.t. 𝑎𝑖, 𝑎𝑗 ∈ 𝑆 (note, by Condition 2 it implies that P𝑗(𝑆 ∖{𝑎𝑖}) >

P𝑗(𝑆) for all 𝑆 ⊆ 𝑁 s.t. 𝑎𝑖, 𝑎𝑗 ∈ 𝑆), and zero otherwise. We claim that 𝛿𝑖𝑗 is complete,

asymmetric, and transitive binary relation.

First, we prove that this binary relation is complete, i.e., either 𝛿𝑖𝑗 = 1 or 𝛿𝑗𝑖 = 1. Suppose

that P𝑗(𝑆 ∖ {𝑎𝑖}) ≤ P𝑗(𝑆) for some 𝑆 ⊆ 𝑁 , i.e., 𝛿𝑖𝑗 = 0. Then it follows from the Lemma 5.2.4

that P𝑗(𝑆 ∖ {𝑎𝑖}) = P𝑗(𝑆). Moreover, by Condition 2 we have that P𝑗({𝑎𝑗}) = P𝑗({𝑎𝑖, 𝑎𝑗}). We

can now establish the following chain of equalities:

P𝑖({𝑎𝑖})− P𝑖({𝑎𝑖, 𝑎𝑗})

=

(︂
1− P0({𝑎𝑖})

)︂
−
(︂
1− P0({𝑎𝑖, 𝑎𝑗})− P𝑗({𝑎𝑖, 𝑎𝑗})

)︂
, [by standard probability property]

=

(︂
1− P0({𝑎𝑖})

)︂
−
(︂
1− P0({𝑎𝑖, 𝑎𝑗})− P𝑗({𝑎𝑗})

)︂
,

[︂
by Condition 2, see above

]︂
=

(︂
1− P0({𝑎𝑖})

)︂
−
(︂
P0({𝑎𝑗})− P0({𝑎𝑖, 𝑎𝑗})

)︂
, [by standard probability property]

= 1− P0({𝑎𝑖})− P0({𝑎𝑗}) + P0({𝑎𝑖, 𝑎𝑗}) > 0,[︂
by Condition 3 and Lemma 5.2.3, where 𝐶 = 𝑆 = {𝑎𝑖, 𝑎𝑗}

]︂
,

which concludes that 𝛿𝑗𝑖 = 1. Therefore, completeness of binary relation 𝛿𝑖𝑗 now follows.

Second, we establish that the defined binary relation 𝛿 is asymmetric, i.e., if 𝛿𝑖𝑗 = 1 then

𝛿𝑗𝑖 = 0. Suppose that P𝑗(𝑆 ∖ {𝑎𝑖}) > P𝑗(𝑆) for some 𝑆 ⊆ 𝑁 , i.e., 𝛿𝑖𝑗 = 1. Then by Condition

1 we have that P𝑖(𝑆 ∖ {𝑎𝑗}) = P𝑖(𝑆) (note, by Condition 2 we have that for all 𝑆 ′ ⊆ 𝑁 s.t.

𝑎1, 𝑎2 ∈ 𝑆 ′: P𝑖(𝑆
′ ∖ {𝑎𝑗}) = P𝑖(𝑆

′)), which further implies that 𝛿𝑗𝑖 = 0. As a result, asymmetry

of binary relation 𝛿𝑖𝑗 now follows.

Third, we show the transitivity of binary relation 𝛿, i.e., if 𝛿𝑖𝑗 = 1 and 𝛿𝑗𝑘 = 1 then 𝛿𝑖𝑘 = 1 for

all 𝑎𝑖, 𝑎𝑗, 𝑎𝑘 ∈ 𝑁 . Assume by contradiction that binary relation 𝛿 is not transitive. To this end,
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there exist 𝑎𝑖, 𝑎𝑗, 𝑎𝑘 ∈ 𝑁 such that 𝛿𝑖𝑗 = 1, 𝛿𝑗𝑘 = 1, 𝛿𝑖𝑘 = 0 with the following list of implications:

𝛿𝑖𝑗 = 1⇒ P𝑗(𝑆 ∖ {𝑎𝑖}) > P𝑗(𝑆),
[︀
for some 𝑆 ⊆ 𝑁

]︀
⇒ P𝑗({𝑎𝑗, 𝑎𝑘}) > P𝑗({𝑎𝑖, 𝑎𝑗, 𝑎𝑘}),

[︂
by Condition 2

]︂
⇒ P𝑖({𝑎𝑖, 𝑎𝑘}) = P𝑖({𝑎𝑗, 𝑎𝑖, 𝑎𝑘}),

[︂
by Condition 1

]︂
(5.12)

⇒ P𝑖({𝑎𝑖}) = P𝑖({𝑎𝑗, 𝑎𝑖}),
[︂
by Condition 2

]︂
, (5.13)

𝛿𝑗𝑘 = 1⇒ P𝑘(𝑆 ∖ {𝑎𝑗}) > P𝑘(𝑆),
[︀
for some 𝑆 ⊆ 𝑁

]︀
⇒ P𝑘({𝑎𝑖, 𝑎𝑘}) > P𝑘({𝑎𝑖, 𝑎𝑗, 𝑎𝑘}),

[︂
by Condition 2

]︂
⇒ P𝑗({𝑎𝑖, 𝑎𝑗}) = P𝑗({𝑎𝑖, 𝑎𝑗, 𝑎𝑘}),

[︂
by Condition 1

]︂
(5.14)

⇒ P𝑗({𝑎𝑗}) = P𝑗({𝑎𝑗, 𝑎𝑘}),
[︂
by Condition 2

]︂
, (5.15)

𝛿𝑖𝑘 = 0⇒ P𝑘(𝑆 ∖ {𝑎𝑖}) ≤ P𝑘(𝑆),
[︀
for some 𝑆 ⊆ 𝑁

]︀
⇒ P𝑘(𝑆 ∖ {𝑎𝑖}) = P𝑘(𝑆),

[︂
by Lemma 5.2.4

]︂
(5.16)

⇒ P𝑘({𝑎𝑘}) = P𝑘({𝑎𝑖, 𝑎𝑘}),
[︂
by Condition 2

]︂
. (5.17)

Using the property of the choice rule, i.e., ∀ 𝑆 ⊆ 𝑁 :
∑︀

𝑎𝑟∈𝑆+ P𝑟(𝑆) = 1, for offer sets 𝑆1 =

{𝑎𝑖, 𝑎𝑗}, 𝑆2 = {𝑎𝑗, 𝑎𝑘}, 𝑆3 = {𝑎𝑖, 𝑎𝑘}, and 𝑆4 = {𝑎𝑖, 𝑎𝑗, 𝑎𝑘} we further establish the following list

of implications:

For 𝑆1 = {𝑎𝑖, 𝑎𝑗} : P𝑖(𝑆1) + P𝑗(𝑆1) + P0(𝑆1) = 1

⇒ P𝑖({𝑎𝑖}) + P𝑗(𝑆1) + P0(𝑆1) = 1,

[︂
by Equation (5.13)

]︂
⇒ P𝑖({𝑎𝑖}) + P𝑗(𝑆4) + P0(𝑆1) = 1,

[︂
by Equation (5.14)

]︂
⇒ P𝑗(𝑆4) = P0({𝑎𝑖})− P0(𝑆1),

[︀
by standard probability property

]︀
. (5.18)
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For 𝑆2 = {𝑎𝑗, 𝑎𝑘} : P𝑗(𝑆2) + P𝑘(𝑆2) + P0(𝑆2) = 1

⇒ P𝑗({𝑎𝑗}) + P𝑘(𝑆2) + P0(𝑆2) = 1,

[︂
by Equation (5.15)

]︂
⇒ P𝑗({𝑎𝑗}) + P𝑘(𝑆4) + P0(𝑆2) = 1,

[︂
by Equation (5.16)

]︂
⇒ P𝑘(𝑆4) = P0({𝑎𝑗})− P0(𝑆2),

[︀
by standard probability property

]︀
. (5.19)

For 𝑆3 = {𝑎𝑖, 𝑎𝑘} : P𝑘(𝑆3) + P𝑖(𝑆3) + P0(𝑆3) = 1

⇒ P𝑘({𝑎𝑘}) + P𝑖(𝑆3) + P0(𝑆3) = 1,

[︂
by Equation (5.17)

]︂
⇒ P𝑘({𝑎𝑘}) + P𝑖(𝑆4) + P0(𝑆3) = 1,

[︂
by Equation (5.12)

]︂
⇒ P𝑖(𝑆4) = P0({𝑎𝑘})− P0(𝑆3),

[︀
by standard probability property

]︀
. (5.20)

For 𝑆4 = {𝑎𝑖, 𝑎𝑗, 𝑎𝑘} : P𝑖(𝑆4) + P𝑗(𝑆4) + P𝑘(𝑆4) + P0(𝑆4) = 1

⇒ 0 = P0(∅)− P0({𝑎𝑖})− P0({𝑎𝑗})− P0({𝑎𝑘}) + P0(𝑆1) + P0(𝑆2)

+ P0(𝑆3)− P0(𝑆4),

[︂
since P0(∅) = 1, and by Equations (5.18)-(5.20)

]︂
> 0,

[︂
by Condition 3 and Lemma 5.2.3, where 𝐶 = 𝑆 = 𝑆4

]︂
,

which leads to contradiction. Therefore, the preference relation 𝛿 is transitive. Since we proved

that binary relation 𝛿 is complete, asymmetric, and transitive, it specifies strict preference list ≻

over products in 𝑁 , s.t. 𝑎𝑖 ≻ 𝑎𝑗 iff 𝛿𝑖𝑗 = 1. In addition, it immediately follows from the axioms

that 𝑎0 is the least preferred item in the product universe according to the preference list ≻, i.e.,

for all 𝑎𝑖 ∈ 𝑁 we have that 𝛿0𝑖 = 0:

P0(∅)− P0({𝑎𝑖}) > 0,

[︂
by Condition 3 and Lemma 5.2.3, where 𝐶 = 𝑆 = {𝑎𝑖}

]︂
,

which implies that 𝛿0𝑖 = 0 by definition.
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Next, we prove that

P𝑟(𝑆) = P0(𝑆
′ ∖ {𝑎𝑟})− P0(𝑆

′), ∀ 𝑎𝑟 ∈ 𝑆 s.t. 𝑆 ⊆ 𝑁,

where 𝑆 ′ is the set of products that consists of product 𝑎𝑟 and all the items in 𝑆 that are preferred

to item 𝑎𝑟, i.e., 𝑆
′ = {𝑎𝑗 ∈ 𝑆 : 𝑎𝑗 ≻ 𝑎𝑟} ∪ {𝑎𝑟}. The argument is proved by induction on the

cardinality 𝑘 of the offer set 𝑆, i.e., 𝑘 = |𝑆|. For the base case, 𝑘 = 1, we have P𝑟({𝑎𝑟}) =

1 − P0({𝑎𝑟}) = P0(∅) − P0({𝑎𝑟}). Suppose the result follows for 𝑘 ≤ 𝑝, then we prove it for

𝑘 = 𝑝+ 1. We consider two cases.

Case 1: product 𝑎𝑟 is not the least preferred item in 𝑆. In other words there exists 𝑎𝑗 ∈ 𝑆 s.t.

𝑎𝑟 ≻ 𝑎𝑗. Then by definition of the binary relation 𝛿 we have that P𝑗(𝑆 ∖ {𝑎𝑟}) > P𝑗(𝑆), and the

result now follows:

P𝑟(𝑆) = P𝑟(𝑆 ∖ {𝑎𝑗}),
[︀
by Condition 1

]︀
= P0(𝑆

′ ∖ {𝑎𝑟})− P0(𝑆
′),

[︀
by induction hypothesis,

and note that 𝑎𝑗 /∈ 𝑆 ′ since 𝑎𝑟 ≻ 𝑎𝑗
]︀
.

Case 2: product 𝑎𝑟 is the least preferred item in 𝑆. Consider offer set 𝑆 = {𝑎𝑟, 𝑎1, 𝑎2..., 𝑎𝑝−1}

such that w.l.o.g. 𝑎𝑝−1 ≻ ... ≻ 𝑎2 ≻ 𝑎1 ≻ 𝑎𝑟. Assuming 𝑎𝑟 ∈ 𝑆, we can now establish the
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following chain of equalities:

P𝑟(𝑆) = 1− P0(𝑆)−
𝑝−1∑︁
𝑖=1

P𝑖(𝑆)

= −P0(𝑆) + P0(∅)−
𝑝−1∑︁
𝑖=1

P𝑖({𝑎𝑟, 𝑎1, 𝑎2..., 𝑎𝑝−1})

= −P0(𝑆) + P0(∅)−
𝑝−1∑︁
𝑖=1

P𝑖({𝑎𝑖, 𝑎𝑖+1..., 𝑎𝑝−1}),
[︂
by Condition 1

]︂

= −P0(𝑆) + P0(∅)−
𝑝−1∑︁
𝑖=1

(︂
P0({𝑎𝑖+1..., 𝑎𝑝−1})− P0({𝑎𝑖, 𝑎𝑖+1..., 𝑎𝑝−1})

)︂
,

[by induction hypothesis]

= −P0(𝑆) + P0({𝑎1, 𝑎2..., 𝑎𝑝−1})

= P0({𝑎1, 𝑎2..., 𝑎𝑝−1})− P0({𝑎𝑟, 𝑎1, 𝑎2..., 𝑎𝑝−1}) = P0(𝑆
′ ∖ {𝑎𝑟})− P0(𝑆

′).

Let us denote two particular sets 𝑆 and 𝑆 ′ as follows: 𝑆 = 𝑁 ∖ {𝑆 ′ ∖ {𝑎𝑟}}, 𝑆 ′ = 𝑁 ∖ 𝑆 ′. We can
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now establish the following chain of equalities:

P𝑟(𝑆) = P0(𝑆
′ ∖ {𝑎𝑟})− P0(𝑆

′)

= P0(𝑆
′ ∖ {𝑎𝑟}) +

(︂ ∑︁
𝐶⊆𝑆

∑︁
𝑋⊆𝐶

(−1)|𝐶|−|𝑋| · P0(𝑁 ∖𝑋)− P0(𝑁 ∖ 𝑆)
)︂
− P0(𝑆

′)

[︂
by invoking Lemma 5.2.1, where 𝑍 = 𝑁, 𝑌 = 𝑆, 𝑃 = 𝐶, and 𝑓(𝑍 ∖ 𝑌 ) = P0(𝑁 ∖ 𝑆)

]︂
=
∑︁
𝐶⊆𝑆

∑︁
𝑋⊆𝐶

(−1)|𝐶|−|𝑋| · P0(𝑁 ∖𝑋)− P0(𝑆
′)

[︂
since 𝑁 ∖ 𝑆 = 𝑆 ′ ∖ {𝑎𝑟}

]︂

=
∑︁
𝐶⊆𝑆

∑︁
𝑋⊆𝐶

(−1)|𝐶|−|𝑋| · P0(𝑁 ∖𝑋)−
(︂ ∑︁

𝐶⊆𝑆′

∑︁
𝑋⊆𝐶

(−1)|𝐶|−|𝑋| · P0(𝑁 ∖𝑋)

− P0(𝑁 ∖ 𝑆 ′)

)︂
− P0(𝑆

′)[︂
by invoking Lemma 5.2.1, where 𝑍 = 𝑁, 𝑌 = 𝑆 ′, 𝑃 = 𝐶, and 𝑓(𝑍 ∖ 𝑌 ) = P0(𝑁 ∖ 𝑆 ′)

]︂
=
∑︁
𝐶⊆𝑆

∑︁
𝑋⊆𝐶

(−1)|𝐶|−|𝑋| · P0(𝑁 ∖𝑋)−
∑︁

𝐶⊆𝑆′

∑︁
𝑋⊆𝐶

(−1)|𝐶|−|𝑋| · P0(𝑁 ∖𝑋)

[︂
since 𝑁 ∖ 𝑆 ′ = 𝑆 ′

]︂
=

∑︁
𝐶∈⟨𝑆′∪{𝑎𝑟}⟩

∑︁
𝑋⊆𝐶

(−1)|𝐶|−|𝑋| · P0(𝑁 ∖𝑋)−
∑︁

𝐶⊆𝑆′

∑︁
𝑋⊆𝐶

(−1)|𝐶|−|𝑋| · P0(𝑁 ∖𝑋)

[︂
since 𝑆 = 𝑆 ′ ∪ {𝑎𝑟}

]︂
=

∑︁
𝐶∈⟨𝑆′⟩⊎{𝑎𝑟}

∑︁
𝑋⊆𝐶

(−1)|𝐶|−|𝑋|P0(𝑁 ∖𝑋)

=
∑︁

𝐶∈⟨𝑆′⟩⊎{𝑎𝑟}

𝜆(𝐶), where 𝜆(𝐶) =
∑︁
𝑋⊆𝐶

(−1)|𝐶|−|𝑋|P0(𝑁 ∖𝑋)

=
∑︁
𝐶⊆𝑁

𝜆(𝐶) · I[𝑎𝑟 ∈ 𝐶] · I[𝐶 ∈ ⟨𝑆 ′⟩ ⊎ {𝑎𝑟}]

=
∑︁
𝐶⊆𝑁

𝜆(𝐶) · I[𝑎𝑟 ∈ 𝐶] · I[𝑎𝑟 ≻ 𝑎𝑘 ∀𝑎𝑘 ∈ 𝑆 ∩ 𝐶, 𝑎𝑘 ̸= 𝑎𝑟]

=
∑︁
𝐶⊆𝑁

𝜆(𝐶) · I[𝑎𝑟 ∈ 𝑆 ∩ 𝐶] · I[𝑎𝑟 ≻ 𝑎𝑘 ∀𝑎𝑘 ∈ 𝑆 ∩ 𝐶, 𝑎𝑘 ̸= 𝑎𝑟]

[︂
since we assume that 𝑎𝑟 ∈ 𝑆,

otherwise the choice probability is 0

]︂
,
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which is exactly the equation to compute the probability to purchase 𝑎𝑟 ∈ 𝑆 for the offer set

𝑆 ⊆ 𝑁 under GCC choice model. As a result, we also have P0(𝑆) =
∑︀

𝐶⊆𝑁 𝜆(𝐶) · I[𝑆 ∩ 𝐶 = ∅]

becasue of the standard probability law, i.e., P0(𝑆) = 1 −
∑︀

𝑎𝑟∈𝑆 P𝑟(𝑆). Note that above chain

of equations specifies probability distribution function 𝜆 over consideration sets. Moreover, it

follows from Proposition 2.2.2 that 𝜆 is defined uniquely. In order to complete the proof, we

show that the preference relation ≻ is also defined uniquely. Suppose, by contradiction, there is

another strict preference order ≻′ such that ≻′ ̸=≻ and P·(·)≻′,𝜆 = P·(·)≻,𝜆. Therefore there exist

items 𝑎𝑖, 𝑎𝑗 ∈ 𝑁 s.t. 𝑎𝑖 ≻ 𝑎𝑗 and 𝑎𝑗 ≻′ 𝑎𝑖. By definition of GCC choice rule, we have

P𝑖({𝑎𝑖, 𝑎𝑗})≻,𝜆 =
∑︁
𝐶⊆𝑁

I[𝑎𝑖 ∈ 𝐶] · 𝜆(𝐶),

P𝑖({𝑎𝑖, 𝑎𝑗})≻′,𝜆 =
∑︁
𝐶⊆𝑁

I[𝑎𝑖 ∈ 𝐶] · I[𝑎𝑗 /∈ 𝐶] · 𝜆(𝐶).

As a result, we can establish now the following chain of inequalities:

P𝑖({𝑎𝑖, 𝑎𝑗})≻,𝜆 − P𝑖({𝑎𝑖, 𝑎𝑗})≻′,𝜆 ≥ 𝜆({𝑎𝑖, 𝑎𝑗}) > 0,

[︂
by Condition 3

]︂
,

which contradicts to P·(·)≻′,𝜆 = P·(·)≻,𝜆.
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